Rafiki: Machine learning as an analytics service system

Wei Wang, Jinyang Gao, Meihui Zhang, Sheng Wang, Gang Chen, Teck Khim Ng, Beng Chin Ooi, Jie Shao, Moaz Reyad

Research output: Contribution to journalConference articlepeer-review

51 Citations (Scopus)

Abstract

Big data analytics is gaining massive momentum in the last few years. Applying machine learning models to big data has become an implicit requirement or an expectation for most analysis tasks, especially on high-stakes applications. Typical applications include sentiment analysis against reviews for analyzing on-line products, image classification in food logging applications for monitoring user's daily intake, and stock movement prediction. Extending traditional database systems to support the above analysis is intriguing but challenging. First, it is almost impossible to implement all machine learning models in the database engines. Second, expert knowledge is required to optimize the training and inference procedures in terms of efficiency and effectiveness, which imposes heavy burden on the system users. In this paper, we develop and present a system, called Rafiki, to provide the training and inference service of machine learning models. Rafiki provides distributed hyper-parameter tuning for the training service, and online ensemble modeling for the inference service which trades off between latency and accuracy. Experimental results confirm the efficiency, effectiveness, scalability and usability of Rafiki.

Original languageEnglish
Pages (from-to)128-140
Number of pages13
JournalProceedings of the VLDB Endowment
Volume12
Issue number2
DOIs
Publication statusPublished - 2018
Externally publishedYes
Event45th International Conference on Very Large Data Bases, VLDB 2019 - Los Angeles, United States
Duration: 26 Aug 201730 Aug 2017

Fingerprint

Dive into the research topics of 'Rafiki: Machine learning as an analytics service system'. Together they form a unique fingerprint.

Cite this