TY - JOUR
T1 - Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process
AU - Li, Li
AU - Chen, Renjie
AU - Sun, Feng
AU - Wu, Feng
AU - Liu, Jianrui
PY - 2011/7
Y1 - 2011/7
N2 - A new process is described for recovering and regenerating lithium cobalt oxide from spent lithium-ion batteries (LIBs) by a combination of dismantling, detachment with N-methylpyrrolidone (NMP), acid leaching and re-synthesis of LiCoO2 from the leach liquor as a cathode active material. The leach liquor, obtained from spent LIBs by using a nitric acid leaching solution, is used as electrolyte to regenerate LiCoO2 crystals on nickel plate at constant current in a single synthetic step using electrochemical deposition technology. The crystal structure and surface morphology of regenerated LiCoO2 were determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. LiCoO2 phase with preferred (104) orientation was electro-deposited on nickel substrate at current density 1 mA cm- 2 for 20 h, and found to have good characteristics as a cathode active material in terms of charge and discharge capacity, and cycling performance. The particle size and layer thickness of the regenerated LiCoO 2 crystalline powder were 0.5 μm and 0.2 mm, respectively. The initial charge and discharge capacity were 130.8 and 127.2 mAh g- 1, respectively. After 30 cycles, the capacity had decreased by less than 4% compared with the first cycle. This process involves simple equipment and could be feasible for recycling LIBs in large scale.
AB - A new process is described for recovering and regenerating lithium cobalt oxide from spent lithium-ion batteries (LIBs) by a combination of dismantling, detachment with N-methylpyrrolidone (NMP), acid leaching and re-synthesis of LiCoO2 from the leach liquor as a cathode active material. The leach liquor, obtained from spent LIBs by using a nitric acid leaching solution, is used as electrolyte to regenerate LiCoO2 crystals on nickel plate at constant current in a single synthetic step using electrochemical deposition technology. The crystal structure and surface morphology of regenerated LiCoO2 were determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. LiCoO2 phase with preferred (104) orientation was electro-deposited on nickel substrate at current density 1 mA cm- 2 for 20 h, and found to have good characteristics as a cathode active material in terms of charge and discharge capacity, and cycling performance. The particle size and layer thickness of the regenerated LiCoO 2 crystalline powder were 0.5 μm and 0.2 mm, respectively. The initial charge and discharge capacity were 130.8 and 127.2 mAh g- 1, respectively. After 30 cycles, the capacity had decreased by less than 4% compared with the first cycle. This process involves simple equipment and could be feasible for recycling LIBs in large scale.
KW - Electrochemical-deposition
KW - Lithium cobalt oxide
KW - Regeneration
KW - Spent lithium ion batteries
UR - http://www.scopus.com/inward/record.url?scp=79957977525&partnerID=8YFLogxK
U2 - 10.1016/j.hydromet.2011.04.013
DO - 10.1016/j.hydromet.2011.04.013
M3 - Article
AN - SCOPUS:79957977525
SN - 0304-386X
VL - 108
SP - 220
EP - 225
JO - Hydrometallurgy
JF - Hydrometallurgy
IS - 3-4
ER -