TY - JOUR
T1 - Polyethylenimine-Modified Membranes for CO2 Capture and in Situ Hydrogenation
AU - Wang, Yanzi
AU - Chen, Yongzhen
AU - Wang, Caihong
AU - Sun, Jing
AU - Zhao, Zhiping
AU - Liu, Wenfang
N1 - Publisher Copyright:
© 2018 American Chemical Society.
PY - 2018/8/29
Y1 - 2018/8/29
N2 - Enzymatic CO2 reduction can provide value-added chemicals from greenhouse gases at ambient temperature and pressure. However, poor solubility of CO2 results in a low conversion rate. In this work, polyethylenimine (PEI) was attached onto the surface of poly(acrylic acid)-grafted (PAA-grafted) polyethylene membranes, and then, the membranes were used in an integrated process of CO2 capture and in situ hydrogenation. Modification conditions were optimized with a surface amino group density of PEI-modified membranes as the characteristic parameter, and then, SEM, FTIR, and XPS analyses were conducted. The effect of PEI-modified membranes on enzyme-catalyzed CO2 conversion to formic acid, regeneration conditions, and reusability were studied. The results show that when the grafting ratio of PAA increased, surface amino group density of PEI-modified membranes increased up to 6.00 × 10-7 mol/cm2 and then kept constant. The optimum modification time, temperature, and PEI concentration were 40 min, 40 °C, and 0.3 wt %. With the same concentration, PEI-1800 could bring more amino groups than PEI-600. SEM, FTIR, and XPS results further confirmed PEI attachment. Introduction of membrane-supported PEI with 5.86 × 10-6 mol of amino groups facilitated greatly enzymatic CO2 hydrogenation, and the initial reaction rate increased from 0.280 to 6.90 μM/min. After being regenerated in ammonia, PEI-modified membranes could be reused, and the relative reaction rate was, respectively, 88.0% and 65.7% after 5 and 10 cycles.
AB - Enzymatic CO2 reduction can provide value-added chemicals from greenhouse gases at ambient temperature and pressure. However, poor solubility of CO2 results in a low conversion rate. In this work, polyethylenimine (PEI) was attached onto the surface of poly(acrylic acid)-grafted (PAA-grafted) polyethylene membranes, and then, the membranes were used in an integrated process of CO2 capture and in situ hydrogenation. Modification conditions were optimized with a surface amino group density of PEI-modified membranes as the characteristic parameter, and then, SEM, FTIR, and XPS analyses were conducted. The effect of PEI-modified membranes on enzyme-catalyzed CO2 conversion to formic acid, regeneration conditions, and reusability were studied. The results show that when the grafting ratio of PAA increased, surface amino group density of PEI-modified membranes increased up to 6.00 × 10-7 mol/cm2 and then kept constant. The optimum modification time, temperature, and PEI concentration were 40 min, 40 °C, and 0.3 wt %. With the same concentration, PEI-1800 could bring more amino groups than PEI-600. SEM, FTIR, and XPS results further confirmed PEI attachment. Introduction of membrane-supported PEI with 5.86 × 10-6 mol of amino groups facilitated greatly enzymatic CO2 hydrogenation, and the initial reaction rate increased from 0.280 to 6.90 μM/min. After being regenerated in ammonia, PEI-modified membranes could be reused, and the relative reaction rate was, respectively, 88.0% and 65.7% after 5 and 10 cycles.
KW - CO hydrogenation
KW - formic acid
KW - membrane
KW - polyethylenimine
KW - surface modification
UR - http://www.scopus.com/inward/record.url?scp=85051102680&partnerID=8YFLogxK
U2 - 10.1021/acsami.8b08636
DO - 10.1021/acsami.8b08636
M3 - Article
C2 - 30059610
AN - SCOPUS:85051102680
SN - 1944-8244
VL - 10
SP - 29003
EP - 29009
JO - ACS applied materials & interfaces
JF - ACS applied materials & interfaces
IS - 34
ER -