Object detection based deep unsupervised hashing

Rong Cheng Tu, Xian Ling Mao*, Bo Si Feng, Shu Ying Yu

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Citations (Scopus)

Abstract

Recently, similarity-preserving hashing methods have been extensively studied for large-scale image retrieval. Compared with unsupervised hashing, supervised hashing methods for labeled data have usually better performance by utilizing semantic label information. Intuitively, for unlabeled data, it will improve the performance of unsupervised hashing methods if we can first mine some supervised semantic'label information' from unlabeled data and then incorporate the'label information' into the training process. Thus, in this paper, we propose a novel Object Detection based Deep Unsupervised Hashing method (ODDUH). Specifically, a pre-trained object detection model is utilized to mining supervised'label information', which is used to guide the learning process to generate high-quality hash codes. Extensive experiments on two public datasets demonstrate that the proposed method outperforms the state-of-the-art unsupervised hashing methods in the image retrieval task.

Original languageEnglish
Title of host publicationProceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019
EditorsSarit Kraus
PublisherInternational Joint Conferences on Artificial Intelligence
Pages3606-3612
Number of pages7
ISBN (Electronic)9780999241141
DOIs
Publication statusPublished - 2019
Event28th International Joint Conference on Artificial Intelligence, IJCAI 2019 - Macao, China
Duration: 10 Aug 201916 Aug 2019

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2019-August
ISSN (Print)1045-0823

Conference

Conference28th International Joint Conference on Artificial Intelligence, IJCAI 2019
Country/TerritoryChina
CityMacao
Period10/08/1916/08/19

Fingerprint

Dive into the research topics of 'Object detection based deep unsupervised hashing'. Together they form a unique fingerprint.

Cite this