Microstructure and mechanical properties of Ti-6Al-4V fabricated by verticalwire feeding with axisymmetric multi-laser source

Jie Fu, Lin Gong*, Yifei Zhang, Qianru Wu, Xuezhi Shi, Junchao Chang, Jiping Lu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

26 Citations (Scopus)

Abstract

Vertical wire feeding with an axisymmetric multi-laser source (feeding the wire vertically into the molten pool) has exhibited great advantages over LAM (laser additive manufacturing) with paraxial wire feeding, which has an anisotropic forming problem in different scanning directions. This paper investigates the forming ability of vertical wire feeding with an axisymmetric multi-laser source, and the microstructure and mechanical properties of the fabricated components. It has been found that vertical wire feeding with an axisymmetric multi-laser source has a strong forming ability with no anisotropic forming problem when fabricating the complex parts in a three-axis machine tool. Most of the grains in the samples are equiaxed grains, and a small amount of short columnar grains exist which are parallel to each other. The microstructure of the fabricated samples exhibits a fine basket-weave structure and martensite due to the fast cooling rate which was caused by the small size of the molten pool and the additional heat dissipation from the feeding wire. The static tensile test shows that the average ultimate tensile strength is 1140 MPa in the scanning direction and 1115 MPa in the building direction, and the average elongation is about 6% in both directions.

Original languageEnglish
Article number227
JournalApplied Sciences (Switzerland)
Volume7
Issue number3
DOIs
Publication statusPublished - 2017

Keywords

  • Laser additive manufacturing
  • Ti-6Al-4V titanium alloy
  • Vertical wire feeding

Fingerprint

Dive into the research topics of 'Microstructure and mechanical properties of Ti-6Al-4V fabricated by verticalwire feeding with axisymmetric multi-laser source'. Together they form a unique fingerprint.

Cite this