Hot electrons modulation of third harmonic generation in graphene

Giancarlo Soavi, Gang Wang, Habib Rostami, Andrea Tomadin, Osman Balci, Ioannis Paradisanos, Eva A.A. Pogna, Giulio Cerullo, Elefterios Lidorikis, Marco Polini, Andrea C. Ferrari

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Hot-electrons dominate the ultrafast (∼fs-ps) optical and electronic properties of metals and semiconductors [1-2] and they are exploited in a variety of applications including photovoltaics and photodetection. Here we perform power-dependent third harmonic generation (THG) measurements on gated single layer graphene (SLG) and we show that hot-electrons modulate significantly the power-law dependence of THG, inducing a large deviation from the expected cubic power-law. We use a Chemical Vapor Deposition (CVD) SLG sample transferred on Fused Silica (FS) and gated by ionic liquid (IL), Fig.1(a). We excite the sample with the idler beam of an Optical Parametric Oscillator (OPO, Coherent) at a photon energy of ħω0=0.69eV. The OPO is seeded by a mode-locked Ti:Sa laser (Coherent) with 150fs pulse duration and 80MHz repetition rate. The OPO idler spot-size is∼4.7µm and the pulse duration ∼300fs.

Original languageEnglish
Title of host publicationThe European Conference on Lasers and Electro-Optics, CLEO_Europe_2019
PublisherOptica Publishing Group (formerly OSA)
ISBN (Print)9781728104690
Publication statusPublished - 2019
Externally publishedYes
EventThe European Conference on Lasers and Electro-Optics, CLEO_Europe_2019 - Munich, Germany
Duration: 23 Jun 201927 Jun 2019

Publication series

NameOptics InfoBase Conference Papers
VolumePart F140-CLEO_Europe 2019
ISSN (Electronic)2162-2701

Conference

ConferenceThe European Conference on Lasers and Electro-Optics, CLEO_Europe_2019
Country/TerritoryGermany
CityMunich
Period23/06/1927/06/19

Fingerprint

Dive into the research topics of 'Hot electrons modulation of third harmonic generation in graphene'. Together they form a unique fingerprint.

Cite this