Highly Efficient Deep-Blue Electrophosphorescent Pt(II) Compounds with Non-Distorted Flat Geometry: Tetradentate versus Macrocyclic Chelate Ligands

Xiang Wang, Tai Peng*, Carmen Nguyen, Zheng Hong Lu, Nan Wang, Wenjie Wu, Quansong Li, Suning Wang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

69 Citations (Scopus)

Abstract

A new class of deep blue electrophosphorescent Pt(II) emitters have been designed and synthesized. This new class of deep blue Pt(II) emitters employ tetradentate and macrocyclic chelate chromophores to constrain the Pt(II) molecules in a non-distorted flat geometry in both the ground state and the excited state. The new deep blue emitters do not produce excimer emission, with emission quantum efficiency as high as 95% in 10% doped PMMA (poly(methyl methacrylate) films, and excellent UV stability, compared to the corresponding bidentate Pt(II) emitters. The macrocyclic tetradentate chelate Pt(II) compounds are the first examples of fully sterically constrained deep blue Pt(II) emitters that do not display structural distortion and have a higher thermal stability and a higher emission quantum efficiency than the corresponding non-macrocyclic tetradentate Pt(II) analogues. A computational study supports that the macrocylic Pt(II) compounds are structurally more stable than the tetradentate Pt(II) molecules. Bright and efficient deep blue electrophosphorescent devices using a macrocyclic Pt(II) emitter have been successfully fabricated with a maximum brightness of 10 680 cd m−2, maximum external quantum efficiency of 15.4% (at 490 cd m−2), and Commission Internationale de L'Eclairage (1931) coordinates (x + y) of less than or near 0.30, respectively.

Original languageEnglish
Article number1604318
JournalAdvanced Functional Materials
Volume27
Issue number4
DOIs
Publication statusPublished - 26 Jan 2017

Keywords

  • UV stability
  • deep blue emitters
  • macrocyclic ligands
  • platinum compounds
  • steric constraint

Fingerprint

Dive into the research topics of 'Highly Efficient Deep-Blue Electrophosphorescent Pt(II) Compounds with Non-Distorted Flat Geometry: Tetradentate versus Macrocyclic Chelate Ligands'. Together they form a unique fingerprint.

Cite this

Wang, X., Peng, T., Nguyen, C., Lu, Z. H., Wang, N., Wu, W., Li, Q., & Wang, S. (2017). Highly Efficient Deep-Blue Electrophosphorescent Pt(II) Compounds with Non-Distorted Flat Geometry: Tetradentate versus Macrocyclic Chelate Ligands. Advanced Functional Materials, 27(4), Article 1604318. https://doi.org/10.1002/adfm.201604318