Calculated based on number of publications stored in Pure and citations from Scopus
20032024

Research activity per year

Personal profile

Research Interests

1. Photochemical reaction mechanism
2. Theoretical design of photoelectric functional materials

Education

2001.09-2006.06 Beijing Normal University, Physical Chemistry, Doctor of Science
1997.09-2001.07 Beijing Normal University, Bachelor of Science, Chemical Education

Professional Experience

2018.07-present School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Professor
2013.02-2018.06 Associate Professor, School of Chemistry and Chemical Engineering, Beijing Institute of Technology
2008.05-2012.11 Postdoctoral Fellow, Department of Chemistry, University of Girona, Spain
2006.07-2008.02 Post-Doctoral Fellow, Department of Physics and Materials Science, City University of Hong Kong

Research Achievement

1. H. Y. Zhu, Q. S. Li*. Understanding of photo-induced reversible rearrangement from borepin to borirane. Chem. Eur. J. 2022, 28, e202201360.
2. W. Y. Zhang, Q. S. Li*, Z. S. Li*. Atomistic mechanism of surface-defect passivation: toward stable and efficient perovskite solar cells. J. Phys. Chem. Lett. 2022, 13, 6686.
3. J. Yang, W. L. Ding, Q. S. Li*, Z. S. Li*. Theoretical study of non-fullerene acceptors using end-capped groups with different electron-withdrawing abilities toward Efficient Organic Solar Cells. J. Phys. Chem. Lett. 2022, 13, 916.
4. J. Yang, X. Wu, Q. S. Li*, Z. S. Li*. Boron-based non-fullerene small molecule acceptors via nitrogen substitution: a theoretical study. Mater. Adv. 2022, 3, 3229.
5. J. Yang, Q. S. Li*, Z. S. Li*. Theoretical design of asymmetric A–D1A’D2–A type non-fullerene acceptors for organic solar cells. Phys. Chem. Chem. Phys. 2021, 23, 12321.
6. W. Y. Zhang, Q. S. Li*, Z. S. Li*. Understanding the surface passivation effects of Lewis base in perovskite solar cells. Appl. Surf. Sci. 2021, 563, 150267.
7. R. Zhu, Q. S. Li*, Z. S. Li*. Molecular engineering of hexaazatriphenylene derivatives toward more efficient electron-transporting materials for inverted perovskite solar cell. ACS Appl. Mater. Interfaces. 2020, 12, 38222.
8. J. Yang, Q. S. Li*, Z. S. Li*. End-capped group manipulation of indacenodithienothiophene-based non-fullerene small molecule acceptors for efficient organic solar cells. Nanoscale 2020, 12, 17795.
9. X. Y. Du, Q. S. Li*. Theoretical study on photoisomerization mechanisms of diphenyl-substituted N,C-chelate organoboron compounds. Chem. Eur. J. 2020, 26, 12891.
10. H. Y. Zhu, Q. S. Li*. Insights into the photoinduced isomerization mechanisms of a N,C–chelate organoboron compound: a theoretical study. ChemPhysChem 2020, 21, 510.
11. R. Zhu, Q. S. Li*, Z. S. Li*. Introducing pyridyl into electron transport materials plays a key role in improving electron mobility and interface properties for inverted perovskite solar cells. J. Mater. Chem. A 2019, 7, 16304.
12. F. P. Li, H. Y. Zhu, Q. S. Li*, Z. S. Li*. Theoretical study on the regioselective
photoisomerization of asymmetric N,C-chelate organoboron compounds. Phys. Chem. Chem. Phys. 2019, 21, 8376.
13. W. L. Ding, X. L. Peng, G. L. Cui, Z. S. Li*, L. Blancafort*, Q. S. Li*. Potential-energy surface and dynamics simulation of THBDBA: an annulated tetraphenylethene derivative combining aggregation-induced emission and switch behavior. ChemPhotoChem 2019, 3, 814.
14. R. Zhu, Q. S. Li*, Z. S. Li*. Nitrogen substitution improves the mobility and stability of electron transport materials for inverted perovskite solar cells. Nanoscale 2018, 10, 17873.
15. J. Bai, B. Lu, Q. Han*, Q. S. Li*, L. Qu*. (111) Facets-oriented Au-decorated carbon nitride nanoplatelets for visible-light-driven overall water splitting. ACS Appl. Mater. Interfaces. 2018, 10, 38066.
16. Y. L. Wang, Q. S. Li*, Z. S. Li*. Effect of pi-bridge units on properties of A-pi-D-pi-A-type nonfullerene acceptors for organic solar cells. Phys. Chem. Chem. Phys. 2018, 20, 14200.
17. X. L. Peng, A. Migani, Q. S. Li*, Z. S. Li, L. Blancafort*. Theoretical study of non-Hammett vs. Hammett behaviour in the thermolysis and photolysis of arylchlorodiazirines. Phys. Chem. Chem. Phys. 2018, 20, 1181.
18. S. K. Mellerup, C. Li, J. Radtke, X. Wang, N. Wang*, Q. S. Li*, S. Wang*. Photochemical generation of chiral N,B,X-heterocycles by heteroaromatic C−X bond scission (X=S, O) and boron insertion. Angew. Chem. Int. Ed. 2018, 57, 9634.
19. S. Wang*, K. Yuan, M. F. Hu, X. Wang, T. Peng, N. Wang*, Q. S. Li*. Cleavage of unstrained C-C bonds in acenes by boron and light: transformation of naphthalene into benzoborepin. Angew. Chem. Int. Ed. 2018, 57, 1073.
20. D. Yang, S. K. Mellerup, J. B. Peng, X. Wang, Q. S. Li*, S. Wang*. Substituent directed phototransformations of BN-heterocycles: elimination vs isomerization via selective B-C bond cleavage. J. Am. Chem. Soc. 2016, 138, 11513.

Expertise related to UN Sustainable Development Goals

In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This person’s work contributes towards the following SDG(s):

  • SDG 7 - Affordable and Clean Energy

Fingerprint

Dive into the research topics where Quansong Li is active. These topic labels come from the works of this person. Together they form a unique fingerprint.
  • 1 Similar Profiles

Collaborations and top research areas from the last five years

Recent external collaboration on country/territory level. Dive into details by clicking on the dots or