Abstract
Hybrid organic-inorganic perovskite materials have obtained considerable attention due to their exotic optoelectronic properties and extraordinarily high performance in photovoltaic devices. Herein, we successively converted the ultrathin PbI2/MoS2 into the CH3NH3PbI3/MoS2 heterostructures via CH3NH3I vapor processing. Atomic force microscopy (AFM)、Scanning electron microscopy (SEM) and X-ray photoemission spectroscopy (XPS) measurements prove the high-quality of the converted CH3NH3PbI3/MoS2. Both MoS2 and CH3NH3PbI3 related photoluminescence (PL) intensity quenching in CH3NH3PbI3/MoS2 implies a Type-II energy level alignment at the interface. Temperature-dependent PL measurements show that the emission peak position shifting trend of CH3NH3PbI3 is opposite to that of MoS2 (traditional semiconductors) due to the thermal expansion and electron-phonon coupling effects. The CH3NH3PbI3/TMDC heterostructures are useful in fabricating innovative devices for wider optoelectronic applications.
Original language | English |
---|---|
Pages (from-to) | 27-33 |
Number of pages | 7 |
Journal | Current Applied Physics |
Volume | 36 |
DOIs | |
Publication status | Published - Apr 2022 |
Keywords
- Intercalation
- Interfacial interaction
- Temperature dependent PL
- TypeⅡ energy alignment
- vdW epitaxy