TY - JOUR
T1 - Electromagnetic wave absorption performance and electrochemical properties of multifunctional materials
T2 - Air@Co@Co3Sn2@SnO2 hollow sphere/reduced graphene oxide composites
AU - Wen, Guosheng
AU - Zhao, Xiuchen
AU - Liu, Ying
AU - Yan, Dazhou
AU - Hou, Zhuangzhuang
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2021/9/15
Y1 - 2021/9/15
N2 - Herein, a facile and controllable structural fabrication strategy is presented for the fabrication of multinanoshell Air@metal@intermetallic@oxide-like Air@Co@Co3Sn2@SnO2 hollow spheres with a multinanoshell (HSMNS) structure using a hollow Co sphere template and a simple hydrothermal method. Composites of Air@Co@Co3Sn2@SnO2 HSMNS/reduced graphene oxide (RGO) were obtained, and the electromagnetic wave (EW) absorbing properties of the composites as microwave-absorbing materials as well as the electrochemical properties as the anode electrode materials of lithium-ion batteries (LIBs) were investigated. The obtained results demonstrate that the Air@Co@Co3Sn2@SnO2/RGO composite exhibited remarkable EW absorbing properties with an extremely high reflection loss of −55.49 dB and an ultrabroad effective absorption bandwidth of 5.43 GHz when loaded at only 5 wt% in a paraffin coating owing to the strengthened synergistic effects of the magnetic metal, resistive intermetallic, and dielectric metal oxide shells. In addition, the composite showed a superior performance with long-term cycling stability (960 mAh g−1 after 180 cycles at a current density of 0.1 A g−1) when used as the anode of an LIB. These results indicate that the composite of Air@Co@Co3Sn2@SnO2 HSMNS/RGO, which exhibits light-weight, highly efficient absorbing properties, and long-term cycling stability as the anode electrode of LIBs, has a promising future in EW absorption and electrochemical fields. We hope that this strategy will provide a new method for the construction of complex multinanoshell hollow structural materials in other research fields.
AB - Herein, a facile and controllable structural fabrication strategy is presented for the fabrication of multinanoshell Air@metal@intermetallic@oxide-like Air@Co@Co3Sn2@SnO2 hollow spheres with a multinanoshell (HSMNS) structure using a hollow Co sphere template and a simple hydrothermal method. Composites of Air@Co@Co3Sn2@SnO2 HSMNS/reduced graphene oxide (RGO) were obtained, and the electromagnetic wave (EW) absorbing properties of the composites as microwave-absorbing materials as well as the electrochemical properties as the anode electrode materials of lithium-ion batteries (LIBs) were investigated. The obtained results demonstrate that the Air@Co@Co3Sn2@SnO2/RGO composite exhibited remarkable EW absorbing properties with an extremely high reflection loss of −55.49 dB and an ultrabroad effective absorption bandwidth of 5.43 GHz when loaded at only 5 wt% in a paraffin coating owing to the strengthened synergistic effects of the magnetic metal, resistive intermetallic, and dielectric metal oxide shells. In addition, the composite showed a superior performance with long-term cycling stability (960 mAh g−1 after 180 cycles at a current density of 0.1 A g−1) when used as the anode of an LIB. These results indicate that the composite of Air@Co@Co3Sn2@SnO2 HSMNS/RGO, which exhibits light-weight, highly efficient absorbing properties, and long-term cycling stability as the anode electrode of LIBs, has a promising future in EW absorption and electrochemical fields. We hope that this strategy will provide a new method for the construction of complex multinanoshell hollow structural materials in other research fields.
KW - Electromagnetic absorption properties
KW - Light-weight
KW - Long-term cycling stability
KW - Multinanoshell hollow structure
UR - http://www.scopus.com/inward/record.url?scp=85107063557&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2021.130479
DO - 10.1016/j.cej.2021.130479
M3 - Article
AN - SCOPUS:85107063557
SN - 1385-8947
VL - 420
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 130479
ER -