Double Resonant Raman Scattering and Valley Coherence Generation in Monolayer WSe2

G. Wang, M. Glazov, C. Robert, T. Amand, X. Marie, B. Urbaszek

Research output: Contribution to journalArticlepeer-review

65 Citations (Scopus)

Abstract

The electronic states at the direct band gap of monolayer transition metal dichalcogenides such as WSe2 at the K+ and K- valleys are related by time reversal and may be viewed as pseudospins. The corresponding optical interband transitions are governed by robust excitons. Excitation with linearly polarized light yields the coherent superposition of exciton pseudospin states, referred to as coherent valley states. Here, we uncover how and why valley coherence can be generated efficiently. In double resonant Raman spectroscopy, we show that the optically generated 2s exciton state differs from the 1s state by exactly the energy of the combination of several prominent phonons. Superimposed on the exciton photoluminescence (PL), we observe the double resonant Raman signal. This spectrally narrow peak shifts with the excitation laser energy as incoming photons match the 2s and outgoing photons the 1s exciton transition. The multiphonon resonance has important consequences: following linearly polarized excitation of the 2s exciton, a superposition of valley states is efficiently transferred from the 2s to 1s state. This explains the high degree of valley coherence measured for the 1s exciton PL.

Original languageEnglish
Article number117401
JournalPhysical Review Letters
Volume115
Issue number11
DOIs
Publication statusPublished - 9 Sept 2015
Externally publishedYes

Fingerprint

Dive into the research topics of 'Double Resonant Raman Scattering and Valley Coherence Generation in Monolayer WSe2'. Together they form a unique fingerprint.

Cite this