TY - JOUR
T1 - Construction of Interlayered Single-Atom Active Sites on Bipyridine-Based 2D Conjugated Covalent-Organic Frameworks for Boosting the C2 Products of Electrochemical CO2 Reduction
AU - Dai, Lu
AU - Lv, Jianning
AU - Xu, Shuo
AU - Zong, Jiawen
AU - Liang, Lisha
AU - Wang, Bo
AU - Li, Pengfei
N1 - Publisher Copyright:
© 2024 American Chemical Society.
PY - 2024
Y1 - 2024
N2 - The electrochemical carbon dioxide reduction (eCO2RR) shows great potential in the realization of carbon neutrality, which requires a dedicated catalyst design. To develop electrocatalysts that favor C2 products, herein, the synthetic protocol for engineering interlayered single-atom metal active sites on the bipyridine-linked 2D conjugated covalent-organic framework (2D c-COF) has been developed by utilizing the interlayer π-π stacking. The resultant M@BTT-BPy-COF (where M = Cu, Ni, and Fe) provides fully exposed single-atom active sites with a suitable interdistance for catalyzing the key C-C coupling in the eCO2RR process. The Faradaic efficiency of ethanol (FEethanol) exceeds 40% with M@BTT-BPy-COF at −0.8 V vs RHE, outperforming most reported COF-based electrocatalysts. Density functional calculations suggest that the proximal active sites in the pore channel of COFs are the key active sites for promoting the C-C coupling to generate ethanol product. This investigation presents a novel way to engineer single-atom catalytic centers on 2D c-COFs, displaying the great potential of 2D c-COFs in electrocatalysis.
AB - The electrochemical carbon dioxide reduction (eCO2RR) shows great potential in the realization of carbon neutrality, which requires a dedicated catalyst design. To develop electrocatalysts that favor C2 products, herein, the synthetic protocol for engineering interlayered single-atom metal active sites on the bipyridine-linked 2D conjugated covalent-organic framework (2D c-COF) has been developed by utilizing the interlayer π-π stacking. The resultant M@BTT-BPy-COF (where M = Cu, Ni, and Fe) provides fully exposed single-atom active sites with a suitable interdistance for catalyzing the key C-C coupling in the eCO2RR process. The Faradaic efficiency of ethanol (FEethanol) exceeds 40% with M@BTT-BPy-COF at −0.8 V vs RHE, outperforming most reported COF-based electrocatalysts. Density functional calculations suggest that the proximal active sites in the pore channel of COFs are the key active sites for promoting the C-C coupling to generate ethanol product. This investigation presents a novel way to engineer single-atom catalytic centers on 2D c-COFs, displaying the great potential of 2D c-COFs in electrocatalysis.
KW - CO reduction
KW - covalent-organic frameworks
KW - electrocatalysis
KW - interlayered active sites
KW - single-atom catalysts
UR - http://www.scopus.com/inward/record.url?scp=85210278522&partnerID=8YFLogxK
U2 - 10.1021/acsami.4c16371
DO - 10.1021/acsami.4c16371
M3 - Article
AN - SCOPUS:85210278522
SN - 1944-8244
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
ER -