Community Search: A Meta-Learning Approach

Shuheng Fang, Kangfei Zhao*, Guanghua Li, Jeffrey Xu Yu

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

9 Citations (Scopus)

Abstract

Community Search (CS) is one of the fundamental graph analysis tasks, which is a building block of various real applications. Given any query nodes, CS aims to find cohesive subgraphs that query nodes belong to. Recently, a large number of CS algorithms are designed. These algorithms adopt predefined subgraph patterns to model the communities, which cannot find ground-truth communities that do not have such pre-defined patterns in real-world graphs. Thereby, machine learning (ML) and deep learning (DL) based approaches are proposed to capture flexible community structures by learning from ground-truth communities in a data-driven fashion. These approaches rely on sufficient training data to provide enough generalization for ML models, however, the ground-truth cannot be comprehensively collected beforehand.In this paper, we study ML/DL-based approaches for CS, under the circumstance of small training data. Instead of directly fitting the small data, we extract prior knowledge which is shared across multiple CS tasks via learning a meta model. Each CS task is a graph with several queries that possess corresponding partial ground-truth. The meta model can be swiftly adapted to a task to be predicted by feeding a few task-specific training data. We find that trivially applying multiple classical meta-learning algorithms to CS suffers from problems regarding prediction effectiveness, generalization capability and efficiency. To address such problems, we propose a novel meta-learning based framework, Conditional Graph Neural Process (CGNP), to fulfill the prior extraction and adaptation procedure. A meta CGNP model is a task-common node embedding function for clustering, learned by metric-based graph learning, which fully exploits the characteristics of CS. We compare CGNP with CS algorithms and ML baselines on real graphs with ground-truth communities. Our experiments verify that CGNP outperforms the other native graph algorithms and ML/DL baselines 0.33 and 0.26 on F1 score by average.

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE 39th International Conference on Data Engineering, ICDE 2023
PublisherIEEE Computer Society
Pages2358-2371
Number of pages14
ISBN (Electronic)9798350322279
DOIs
Publication statusPublished - 2023
Event39th IEEE International Conference on Data Engineering, ICDE 2023 - Anaheim, United States
Duration: 3 Apr 20237 Apr 2023

Publication series

NameProceedings - International Conference on Data Engineering
Volume2023-April
ISSN (Print)1084-4627

Conference

Conference39th IEEE International Conference on Data Engineering, ICDE 2023
Country/TerritoryUnited States
CityAnaheim
Period3/04/237/04/23

Keywords

  • Community search
  • Meta-learning
  • Neural process

Fingerprint

Dive into the research topics of 'Community Search: A Meta-Learning Approach'. Together they form a unique fingerprint.

Cite this