Abstract
Lithium-ion batteries currently suffer from low capacity and fast degradation under fast charging and/or low temperatures. In this work, a colloid liquid electrolyte (CLE) is designed, where the trace amount of lithium thiocarbonate (LTC) colloids in commercial carbonate electrolyte (1 m LiPF6 in ethylene carbonate/dimethyl carbonate) not only boosts up σLi+ but also improves the Li+ transfer kinetics at LiNi0.8Co0.15Al0.05O2 (NCA) cathode/electrolyte interface. The competitive coordination of LTCs with anions and solvents facilitates the dissociation of lithium salts and Li+ decoupling, dramatically enhancing the σLi+ (15 to 4.5 mS cm−1 at 30 and −20 °C, respectively); meanwhile, the desolvation process is accelerated. It demonstrates that LTC colloids induce an ≈5 nm ultrathin Li2CO3-rich cathode electrolyte interface and infuse the grain boundary of NCA particles, enhancing interfacial Li+ transfer and inhibiting the particle cracks during cycling. Consequently, the Li||CLE||NCA battery delivers a maximum capacity of 135 mAh g−1 at a 10 C rate with 80% retention after 2000 cycles. Moreover, the fast-charging capability under a sub-zero environment is proved (122 mAh g−1 with 90% retention after 400 cycles at 2 C and −10 °C). This strategy for tailoring the interfacial charge transfer appears generalizable and can practically be extended to next-generation energy-storage systems.
Original language | English |
---|---|
Article number | 2209140 |
Journal | Advanced Materials |
Volume | 35 |
Issue number | 12 |
DOIs | |
Publication status | Published - 23 Mar 2023 |
Keywords
- cathode electrolyte interface
- coordination environment
- electrolytes
- fast charging
- lithium-ion batteries