Capsule-Based Networks for Road Marking Extraction and Classification from Mobile LiDAR Point Clouds

Lingfei Ma, Ying Li, Jonathan Li*, Yongtao Yu, Jose Marcato Junior, Wesley Nunes Goncalves, Michael A. Chapman

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

43 Citations (Scopus)

Abstract

Accurate road marking extraction and classification play a significant role in the development of autonomous vehicles (AVs) and high-definition (HD) maps. Due to point density and intensity variations from mobile laser scanning (MLS) systems, most of the existing thresholding-based extraction methods and rule-based classification methods cannot deliver high efficiency and remarkable robustness. To address this, we propose a capsule-based deep learning framework for road marking extraction and classification from massive and unordered MLS point clouds. This framework mainly contains three modules. Module I is first implemented to segment road surfaces from 3D MLS point clouds, followed by an inverse distance weighting (IDW) interpolation method for 2D georeferenced image generation. Then, in Module II, a U-shaped capsule-based network is constructed to extract road markings based on the convolutional and deconvolutional capsule operations. Finally, a hybrid capsule-based network is developed to classify different types of road markings by using a revised dynamic routing algorithm and large-margin Softmax loss function. A road marking dataset containing both 3D point clouds and manually labeled reference data is built from three types of road scenes, including urban roads, highways, and underground garages. The proposed networks were accordingly evaluated by estimating robustness and efficiency using this dataset. Quantitative evaluations indicate the proposed extraction method can deliver 94.11% in precision, 90.52% in recall, and 92.43% in F1-score, respectively, while the classification network achieves an average of 3.42% misclassification rate in different road scenes.

Original languageEnglish
Article number9087859
Pages (from-to)1981-1995
Number of pages15
JournalIEEE Transactions on Intelligent Transportation Systems
Volume22
Issue number4
DOIs
Publication statusPublished - Apr 2021
Externally publishedYes

Keywords

  • LiDAR
  • Point cloud
  • capsule network
  • classification
  • dynamic routing
  • extraction
  • road marking
  • road surface

Fingerprint

Dive into the research topics of 'Capsule-Based Networks for Road Marking Extraction and Classification from Mobile LiDAR Point Clouds'. Together they form a unique fingerprint.

Cite this