Abstract
Neurofeedback targets self-regularized brain activity to normalized brain function based on brain-computer interface (BCI) technology. Although BCI software or platforms have continued to mature in other fields, little effort has been expended on neurofeedback applications. Hence, we present BrainKilter, a real-time electroencephalogram (EEG) analysis platform based on a '4-tier layered model'. The purposes of BrainKilter are to improve portability and accessibility, allowing different users to choose various options to perform EEG processing, target stimulation-induction through a pipeline, and analyze data online, essentially, to design a protocol paradigm and applicable BCI technology for neurofeedback experiments. The data processing effectiveness and application value of BrainKilter were tested using multiple-parameter neurofeedback training, in which BrainKilter regulated the amplitude of mismatch negative (MMN) signals for healthy individuals. The proposed platform consists of a set of software modules for online protocol design and signal decoding that can be conveniently and efficiently integrated for neurofeedback design and training. The BrainKilter platform provides a truly easy-to-use environment for customizing the experimental paradigm and for optimizing the parameters of neurofeedback experiments for research and clinical neurofeedback applications using BCI technology.
Original language | English |
---|---|
Article number | 8963696 |
Pages (from-to) | 57661-57673 |
Number of pages | 13 |
Journal | IEEE Access |
Volume | 8 |
DOIs | |
Publication status | Published - 2020 |
Keywords
- BCI
- BrainKilter
- MMN
- neurofeedback
- platform
- real-time