Aerodynamic Analysis of a Wall-Climbing Robot with Dual-propeller

Yi Wei*, Qingfang Zhang, Xueshan Gao, Peng Liang, Mingkang Li, Kejie Li

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

A wall-climbing robot is a mobile robot that operates on a vertical wall. A wall-climbing robot with dual-propeller is proposed in this paper, in which the aerodynamics of the propeller is an important research part. Therefore, the aerodynamics of the propeller is simulated by ANSYS Fluent and experimentally analyzed in this paper. First, the aerodynamic simulation analysis of the single rotor and the double rotor is carried out in this paper, and then the tensile test experiment of the single propeller is carried out by using the pulling machine. Finally, an experimental platform for the whole machine was built, and the tensile test experiment was carried out on the double propellers. It is concluded that the aerodynamic forces generated by the two rotors are not linearly superimposed due to the airflow interference, and the rotational speed of the rotors and the distance between the rotor platforms all affect the magnitude of the force.

Original languageEnglish
Title of host publication2022 IEEE International Conference on Mechatronics and Automation, ICMA 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1537-1542
Number of pages6
ISBN (Electronic)9781665408523
DOIs
Publication statusPublished - 2022
Event19th IEEE International Conference on Mechatronics and Automation, ICMA 2022 - Guilin, Guangxi, China
Duration: 7 Aug 202210 Aug 2022

Publication series

Name2022 IEEE International Conference on Mechatronics and Automation, ICMA 2022

Conference

Conference19th IEEE International Conference on Mechatronics and Automation, ICMA 2022
Country/TerritoryChina
CityGuilin, Guangxi
Period7/08/2210/08/22

Keywords

  • Aerodynamics
  • Fluent
  • Propeller
  • Wall-climbing Robot

Fingerprint

Dive into the research topics of 'Aerodynamic Analysis of a Wall-Climbing Robot with Dual-propeller'. Together they form a unique fingerprint.

Cite this