TY - JOUR
T1 - Accurate and lightweight railnet for real-time rail line detection
AU - Tao, Zhen
AU - Ren, Shiwei
AU - Shi, Yueting
AU - Wang, Xiaohua
AU - Wang, Weijiang
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/8/2
Y1 - 2021/8/2
N2 - Railway transportation has always occupied an important position in daily life and social progress. In recent years, computer vision has made promising breakthroughs in intelligent transportation, providing new ideas for detecting rail lines. Yet the majority of rail line detection algorithms use traditional image processing to extract features, and their detection accuracy and instantaneity remain to be improved. This paper goes beyond the aforementioned limitations and proposes a rail line detection algorithm based on deep learning. First, an accurate and lightweight RailNet is designed, which takes full advantage of the powerful advanced semantic information extraction capabilities of deep convolutional neural networks to obtain high-level features of rail lines. The Segmentation Soul (SS) module is creatively added to the RailNet structure, which improves segmentation performance without any additional inference time. The Depth Wise Convolution (DWconv) is introduced in the RailNet to reduce the number of network parameters and eventually ensure real-time detection. Afterward, according to the binary segmentation maps of RailNet output, we propose the rail line fitting algorithm based on sliding window detection and apply the inverse perspective transformation. Thus the polynomial functions and curvature of the rail lines are calcu-lated, and rail lines are identified in the original images. Furthermore, we collect a real-world rail lines dataset, named RAWRail. The proposed algorithm has been fully validated on the RAWRail dataset, running at 74 FPS, and the accuracy reaches 98.6%, which is superior to the current rail line detection algorithms and shows powerful potential in real applications.
AB - Railway transportation has always occupied an important position in daily life and social progress. In recent years, computer vision has made promising breakthroughs in intelligent transportation, providing new ideas for detecting rail lines. Yet the majority of rail line detection algorithms use traditional image processing to extract features, and their detection accuracy and instantaneity remain to be improved. This paper goes beyond the aforementioned limitations and proposes a rail line detection algorithm based on deep learning. First, an accurate and lightweight RailNet is designed, which takes full advantage of the powerful advanced semantic information extraction capabilities of deep convolutional neural networks to obtain high-level features of rail lines. The Segmentation Soul (SS) module is creatively added to the RailNet structure, which improves segmentation performance without any additional inference time. The Depth Wise Convolution (DWconv) is introduced in the RailNet to reduce the number of network parameters and eventually ensure real-time detection. Afterward, according to the binary segmentation maps of RailNet output, we propose the rail line fitting algorithm based on sliding window detection and apply the inverse perspective transformation. Thus the polynomial functions and curvature of the rail lines are calcu-lated, and rail lines are identified in the original images. Furthermore, we collect a real-world rail lines dataset, named RAWRail. The proposed algorithm has been fully validated on the RAWRail dataset, running at 74 FPS, and the accuracy reaches 98.6%, which is superior to the current rail line detection algorithms and shows powerful potential in real applications.
KW - Convolutional neural network
KW - Rail line detection
KW - RailNet
KW - Sliding window detection
UR - http://www.scopus.com/inward/record.url?scp=85113718803&partnerID=8YFLogxK
U2 - 10.3390/electronics10162038
DO - 10.3390/electronics10162038
M3 - Article
AN - SCOPUS:85113718803
SN - 2079-9292
VL - 10
JO - Electronics (Switzerland)
JF - Electronics (Switzerland)
IS - 16
M1 - 2038
ER -