Abstract
Designing stable eco-friendly materials that use abundant H2O as the hydrogen and electron source for photocatalytic conversion of CO2 presents a promising route to confronting climate change, but it remains challenging. In this work, we demonstrated that the strategy of converting imine-linkers into 4-carboxyl-quinoline linkages in covalent organic frameworks (COFs) could be used to prepare efficient crystalline porous polymeric photocatalysts for CO2 reduction using H2O as the electron donor. In particular, QL-COF, featuring hydrophilic 4-carboxyl-quinoline linkages, was found to show improved adsorption of H2O and CO2 compared with LZU1-COF which was constructed via imine linkages. Theoretical studies indicated that hydrophilic -COOH groups presented strong binding with H2O molecules. Importantly, the pre-adsorbed H2O molecules were found to further enhance the binding of CO2 molecules in the pores. The fully conjugated framework of QL-COF improved the separation and transfer of photogenerated charge carriers, leading to excellent activity and photostability for photoreduction of CO2 with gaseous H2O. Ultimately, QL-COF reached a high selectivity of 99.3% for CO generation (156 μmol g−1 h−1) under simulated sunlight irradiation.
Original language | English |
---|---|
Pages (from-to) | 5627-5635 |
Number of pages | 9 |
Journal | Journal of Materials Chemistry A |
Volume | 11 |
Issue number | 11 |
DOIs | |
Publication status | Published - 14 Feb 2023 |