Zero-shot Learning with Cross-Layer Neural Network for Emitter Pattern Recognition

Zilin Zhang, Yan Li, Jinliang Bai

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

The existing emitter pattern recognition methods depend on a large number of labeled samples and are unable to handle unknown samples. Zero-shot Learning (ZSL) can migrate from source classes to target categories by learning a common embedding space, thus realizing the generalization to unknown samples. In this paper, a novel Cross-Layer Neural Network (CLNN) is proposed that integrates different embedding methods into an end-to-end deep learning architecture. The experimental results demonstrate that the proposed method can achieve excellent performances in the presence of unseen radar patterns with either new feature combinations or new feature ranges.

源语言英语
主期刊名ICSIDP 2019 - IEEE International Conference on Signal, Information and Data Processing 2019
出版商Institute of Electrical and Electronics Engineers Inc.
ISBN(电子版)9781728123455
DOI
出版状态已出版 - 12月 2019
活动2019 IEEE International Conference on Signal, Information and Data Processing, ICSIDP 2019 - Chongqing, 中国
期限: 11 12月 201913 12月 2019

出版系列

姓名ICSIDP 2019 - IEEE International Conference on Signal, Information and Data Processing 2019

会议

会议2019 IEEE International Conference on Signal, Information and Data Processing, ICSIDP 2019
国家/地区中国
Chongqing
时期11/12/1913/12/19

指纹

探究 'Zero-shot Learning with Cross-Layer Neural Network for Emitter Pattern Recognition' 的科研主题。它们共同构成独一无二的指纹。

引用此