摘要
Wintgen ideal submanifolds in space forms are those ones attaining the equality pointwise in the so-called DDVV inequality which relates the scalar curvature, the mean curvature and the scalar normal curvature. Using the framework of Möbius geometry, we show that in the codimension two case, the mean curvature spheres of the Wintgen ideal submanifold correspond to a 1-isotropic holomorphic curve in a complex quadric. Conversely, any 1-isotropic complex curve in this complex quadric describes a 2-parameter family of spheres whose envelope is always a Wintgen ideal submanifold of codimension two at the regular points. Via a complex stereographic projection, we show that our characterization is equivalent to Dajczer and Tojeiro's previous description of these submanifolds in terms of minimal surfaces in the Euclidean space.
源语言 | 英语 |
---|---|
页(从-至) | 621-638 |
页数 | 18 |
期刊 | Tohoku Mathematical Journal |
卷 | 68 |
期 | 4 |
DOI | |
出版状态 | 已出版 - 12月 2016 |