TY - JOUR
T1 - Weight-selected attribute bagging for credit scoring
AU - Li, Jianwu
AU - Wei, Haizhou
AU - Hao, Wangli
PY - 2013
Y1 - 2013
N2 - Assessment of credit risk is of great importance in financial risk management. In this paper, we propose an improved attribute bagging method, weight-selected attribute bagging (WSAB), to evaluate credit risk. Weights of attributes are first computed using attribute evaluation method such as linear support vector machine (LSVM) and principal component analysis (PCA). Subsets of attributes are then constructed according to weights of attributes. For each of attribute subsets, the larger the weights of the attributes the larger the probabilities by which they are selected into the attribute subset. Next, training samples and test samples are projected onto each attribute subset, respectively. A scoring model is then constructed based on each set of newly produced training samples. Finally, all scoring models are used to vote for test instances. An individual model that only uses selected attributes will be more accurate because of elimination of some of redundant and uninformative attributes. Besides, the way of selecting attributes by probability can also guarantee the diversity of scoring models. Experimental results based on two credit benchmark databases show that the proposed method, WSAB, is outstanding in both prediction accuracy and stability, as compared to analogous methods.
AB - Assessment of credit risk is of great importance in financial risk management. In this paper, we propose an improved attribute bagging method, weight-selected attribute bagging (WSAB), to evaluate credit risk. Weights of attributes are first computed using attribute evaluation method such as linear support vector machine (LSVM) and principal component analysis (PCA). Subsets of attributes are then constructed according to weights of attributes. For each of attribute subsets, the larger the weights of the attributes the larger the probabilities by which they are selected into the attribute subset. Next, training samples and test samples are projected onto each attribute subset, respectively. A scoring model is then constructed based on each set of newly produced training samples. Finally, all scoring models are used to vote for test instances. An individual model that only uses selected attributes will be more accurate because of elimination of some of redundant and uninformative attributes. Besides, the way of selecting attributes by probability can also guarantee the diversity of scoring models. Experimental results based on two credit benchmark databases show that the proposed method, WSAB, is outstanding in both prediction accuracy and stability, as compared to analogous methods.
UR - http://www.scopus.com/inward/record.url?scp=84878623650&partnerID=8YFLogxK
U2 - 10.1155/2013/379690
DO - 10.1155/2013/379690
M3 - Article
AN - SCOPUS:84878623650
SN - 1024-123X
VL - 2013
JO - Mathematical Problems in Engineering
JF - Mathematical Problems in Engineering
M1 - 379690
ER -