摘要
Predictions regarding the solar greenhouse temperature and humidity are important because they play a critical role in greenhouse cultivation. On account of this, it is important to set up a predictive model of temperature and humidity that would precisely predict the temperature and humidity, reducing potential financial losses. This paper presents a novel temperature and humidity prediction model based on convex bidirectional extreme learning machine (CB-ELM). Simulation results show that the convergence rate of the bidirectional extreme learning machine (B-ELM) can further be improved while retaining the same simplicity, by simply recalculating the output weights of the existing nodes based on a convex optimization method when a new hidden node is randomly added. The performance of the CB-ELM model is compared with other modeling approaches by applying it to predict solar greenhouse temperature and humidity. The experiment results show that the CB-ELM model predictions are more accurate than those of the B-ELM, Back Propagation Neural Network (BPNN), Support Vector Machine (SVM), and Radial Basis Function (RBF). Therefore, it can be considered as a suitable and effective method for predicting the solar greenhouse temperature and humidity.
源语言 | 英语 |
---|---|
页(从-至) | 72-85 |
页数 | 14 |
期刊 | Neurocomputing |
卷 | 249 |
DOI | |
出版状态 | 已出版 - 2 8月 2017 |