Abstract
Predictions regarding the solar greenhouse temperature and humidity are important because they play a critical role in greenhouse cultivation. On account of this, it is important to set up a predictive model of temperature and humidity that would precisely predict the temperature and humidity, reducing potential financial losses. This paper presents a novel temperature and humidity prediction model based on convex bidirectional extreme learning machine (CB-ELM). Simulation results show that the convergence rate of the bidirectional extreme learning machine (B-ELM) can further be improved while retaining the same simplicity, by simply recalculating the output weights of the existing nodes based on a convex optimization method when a new hidden node is randomly added. The performance of the CB-ELM model is compared with other modeling approaches by applying it to predict solar greenhouse temperature and humidity. The experiment results show that the CB-ELM model predictions are more accurate than those of the B-ELM, Back Propagation Neural Network (BPNN), Support Vector Machine (SVM), and Radial Basis Function (RBF). Therefore, it can be considered as a suitable and effective method for predicting the solar greenhouse temperature and humidity.
Original language | English |
---|---|
Pages (from-to) | 72-85 |
Number of pages | 14 |
Journal | Neurocomputing |
Volume | 249 |
DOIs | |
Publication status | Published - 2 Aug 2017 |
Keywords
- Convex bidirectional extreme learning machine
- Radial basis function
- Solar greenhouse
- Support vector machine