Variational principle for contact Hamiltonian systems and its applications

Kaizhi Wang, Lin Wang, Jun Yan*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

42 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 42
  • Captures
    • Readers: 6
see details

摘要

In [8], the authors provided an implicit variational principle for the contact Hamilton's equations {x˙=[Formula presented](x,u,p),p˙=−[Formula presented](x,u,p)−[Formula presented](x,u,p)p,(x,p,u)∈TM×R,u˙=[Formula presented](x,u,p)⋅p−H(x,u,p), where M is a closed, connected and smooth manifold and H=H(x,u,p) is strictly convex, superlinear in p and Lipschitz in u. In the present paper, we focus on two applications of the variational principle: 1. We provide a representation formula for the solution semigroup of the evolutionary equation wt(x,t)+H(x,w(x,t),wx(x,t))=0; 2. We study the ergodic problem of the stationary equation via the solution semigroup. More precisely, we find pairs (u,c) with u∈C(M,R) and c∈R which, in the viscosity sense, satisfy the stationary partial differential equation H(x,u(x),ux(x))=c.

源语言英语
页(从-至)167-200
页数34
期刊Journal des Mathematiques Pures et Appliquees
123
DOI
出版状态已出版 - 3月 2019
已对外发布

指纹

探究 'Variational principle for contact Hamiltonian systems and its applications' 的科研主题。它们共同构成独一无二的指纹。

引用此

Wang, K., Wang, L., & Yan, J. (2019). Variational principle for contact Hamiltonian systems and its applications. Journal des Mathematiques Pures et Appliquees, 123, 167-200. https://doi.org/10.1016/j.matpur.2018.08.011