TY - JOUR
T1 - Variational principle for contact Hamiltonian systems and its applications
AU - Wang, Kaizhi
AU - Wang, Lin
AU - Yan, Jun
N1 - Publisher Copyright:
© 2018 Elsevier Masson SAS
PY - 2019/3
Y1 - 2019/3
N2 - In [8], the authors provided an implicit variational principle for the contact Hamilton's equations {x˙=[Formula presented](x,u,p),p˙=−[Formula presented](x,u,p)−[Formula presented](x,u,p)p,(x,p,u)∈T⁎M×R,u˙=[Formula presented](x,u,p)⋅p−H(x,u,p), where M is a closed, connected and smooth manifold and H=H(x,u,p) is strictly convex, superlinear in p and Lipschitz in u. In the present paper, we focus on two applications of the variational principle: 1. We provide a representation formula for the solution semigroup of the evolutionary equation wt(x,t)+H(x,w(x,t),wx(x,t))=0; 2. We study the ergodic problem of the stationary equation via the solution semigroup. More precisely, we find pairs (u,c) with u∈C(M,R) and c∈R which, in the viscosity sense, satisfy the stationary partial differential equation H(x,u(x),ux(x))=c.
AB - In [8], the authors provided an implicit variational principle for the contact Hamilton's equations {x˙=[Formula presented](x,u,p),p˙=−[Formula presented](x,u,p)−[Formula presented](x,u,p)p,(x,p,u)∈T⁎M×R,u˙=[Formula presented](x,u,p)⋅p−H(x,u,p), where M is a closed, connected and smooth manifold and H=H(x,u,p) is strictly convex, superlinear in p and Lipschitz in u. In the present paper, we focus on two applications of the variational principle: 1. We provide a representation formula for the solution semigroup of the evolutionary equation wt(x,t)+H(x,w(x,t),wx(x,t))=0; 2. We study the ergodic problem of the stationary equation via the solution semigroup. More precisely, we find pairs (u,c) with u∈C(M,R) and c∈R which, in the viscosity sense, satisfy the stationary partial differential equation H(x,u(x),ux(x))=c.
KW - Contact Hamilton's equations
KW - First-order PDEs
KW - Implicit variational principle
KW - Viscosity solutions
UR - http://www.scopus.com/inward/record.url?scp=85045097945&partnerID=8YFLogxK
U2 - 10.1016/j.matpur.2018.08.011
DO - 10.1016/j.matpur.2018.08.011
M3 - Article
AN - SCOPUS:85045097945
SN - 0021-7824
VL - 123
SP - 167
EP - 200
JO - Journal des Mathematiques Pures et Appliquees
JF - Journal des Mathematiques Pures et Appliquees
ER -