王 林

根据储存在 Pure 的刊物以及来自 Scopus 的引用文献数量计算
20162022

每年的科研成果

个人简介

个人简介

王林 职称:教授 电子邮箱:lwang@bit.edu.cn
研究领域为Hamilton动力系统,主持和参加重大、重点等多项国家自然科学基金,2021年获优秀青年基金资助。欢迎对微分方程与动力系统感兴趣的同学报考研究生。
更多

研究领域和方向

微分方程与动力系统

教育背景

2008.9---2013.6,南京大学,博士
2004.9---2008.7,西北工业大学,本科

工作履历

2021.7至今,北京理工大学,教授
2015.9—2021.7,清华大学,助理教授
2013.7—2015.7,复旦大学,博士后

研究成果

[1] Kaizhi Wang, Lin Wang and Jun Yan, Aubry-Mather theory for contact Hamiltonian systems II. Discrete and Continuous Dynamical Systems-A, 42 (2022), 555-595.
[2] Hitoshi Ishii, Kaizhi Wang, Lin Wang and Jun Yan, Hamilton-Jacobi equations with their Hamiltonians depending Lipschitz continuously on the unknown. Communications in Partial Differential Equations, 47 (2022), 417-452
[3] Kaizhi Wang, Lin Wang and Jun Yan, Weak KAM solutions of Hamilton-Jacobi equations with decreasing dependence on unknown functions. Journal of Differential Equations, 286 (2021), 411-432.
[4] Liang Jin, Lin Wang and Jun Yan, A representation formula of viscosity solutions to weakly coupled systems of Hamilton-Jacobi equations with applications to regularizing effect, Journal of Differential Equations, 268 (2020), 2012-2039.
[5] Kaizhi Wang, Lin Wang and Jun Yan, Aubry-Mather theory for contact Hamiltonian systems, Communications in Mathematical Physics, 366 (2019), 981-1023.
[6] Kaizhi Wang, Lin Wang and Jun Yan, Variational principle for contact Hamiltonian systems and its applications, Journal de Mathematiques Pures et Applique, 123 (2019), 167-200.
[7] Kaizhi Wang, Lin Wang and Jun Yan, Implicit variational principle for contact Hamiltonian systems, Nonlinearity, 30 (2017), 492-515.
[8] Anup Biswas, Hitoshi Ishii, Subhamay Saha and Lin Wang, On viscosity solution of HJB equations with state constraints and reflection control, SIAM Journal on Control and Optimization, 55 (2017), 365-396.
[9] Xifeng Su, Lin Wang and Jun Yan, Weak KAM theory for Hamilton-Jacobi equations depending on unknown functions, Discrete and Continuous Dynamical Systems-A, 36 (2016), 6487-6522.
[10] Chong-Qing Cheng and Lin Wang, Destruction of Lagrangian torus for positive definite Hamiltonian systems, Geometric and Functional Analysis, 23 (2013), 848-866.

指纹图谱

深入其中 Lin Wang 为活跃的研究主题。这些主题标签来自此人的成果。它们共同形成唯一的指纹。

最近五年的合作关系和顶尖研究领域

最近的国家/地区级外部合作关系。点击圆点,以了解详细信息或