Task-Aware Encoder Control for Deep Video Compression

Xingtong Ge, Jixiang Luo, Xinjie Zhang, Tongda Xu, Guo Lu, Dailan He, Jing Geng*, Yan Wang, Jun Zhang, Hongwei Qin

*此作品的通讯作者

科研成果: 期刊稿件会议文章同行评审

3 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 3
  • Captures
    • Readers: 12
see details

摘要

Prior research on deep video compression (DVC) for machine tasks typically necessitates training a unique codec for each specific task, mandating a dedicated decoder per task. In contrast, traditional video codecs employ a flexible encoder controller, enabling the adaptation of a single codec to different tasks through mechanisms like mode prediction. Drawing inspiration from this, we introduce an innovative encoder controller for deep video compression for machines. This controller features a mode prediction and a Group of Pictures (GoP) selection module. Our approach centralizes control at the encoding stage, allowing for adaptable encoder adjustments across different tasks, such as detection and tracking, while maintaining compatibility with a standard pre-trained DVC decoder. Empirical evidence demonstrates that our method is applicable across multiple tasks with various existing pre-trained DVCs. Moreover, extensive experiments demonstrate that our method outperforms previous DVC by about 25% bitrate for different tasks, with only one pre-trained decoder.

源语言英语
页(从-至)26036-26045
页数10
期刊Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
DOI
出版状态已出版 - 2024
活动2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024 - Seattle, 美国
期限: 16 6月 202422 6月 2024

指纹

探究 'Task-Aware Encoder Control for Deep Video Compression' 的科研主题。它们共同构成独一无二的指纹。

引用此

Ge, X., Luo, J., Zhang, X., Xu, T., Lu, G., He, D., Geng, J., Wang, Y., Zhang, J., & Qin, H. (2024). Task-Aware Encoder Control for Deep Video Compression. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 26036-26045. https://doi.org/10.1109/CVPR52733.2024.02460