Support vector machine based on Genetic Algorithm integrated navigation fault detection parameter optimization method

Huaijian Li, Jing Fang, Xiaojing Du*, Ziye Hu

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

In order to solve the problem of low fault detection rate of combinatorial navigation due to the mismatch of support vector machine parameters, this paper uses genetic algorithm and lattice search method to find the optimal support vector machine penalty parameter C and kernel function parameter g. The result of the search is brought into the support vector machine to obtain the classification model and finally classify the combinatorial navigation data. The results show that the genetic algorithm has a faster search speed and a higher classification accuracy.

源语言英语
主期刊名2022 4th International Conference on Data-Driven Optimization of Complex Systems, DOCS 2022
出版商Institute of Electrical and Electronics Engineers Inc.
ISBN(电子版)9781665459822
DOI
出版状态已出版 - 2022
活动4th International Conference on Data-Driven Optimization of Complex Systems, DOCS 2022 - Chengdu, 中国
期限: 28 10月 202230 10月 2022

出版系列

姓名2022 4th International Conference on Data-Driven Optimization of Complex Systems, DOCS 2022

会议

会议4th International Conference on Data-Driven Optimization of Complex Systems, DOCS 2022
国家/地区中国
Chengdu
时期28/10/2230/10/22

指纹

探究 'Support vector machine based on Genetic Algorithm integrated navigation fault detection parameter optimization method' 的科研主题。它们共同构成独一无二的指纹。

引用此