Spatial-spectral density peaks based discriminant projection for classification of membranous nephropathy hyperspectral pathological image

Meng Lv, Wei Li*, Ran Tao

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Microscopic hyperspectral imaging has become an emerging technique for various medical applications. However, high dimensionality of hyperspectral image (HSI) makes image processing and extraction of important diagnostic information challenging. In this paper, a novel dimensionality reduction method named spatial-spectral density peaks based discriminant projection (SSDP) is proposed by considering spatial-spectral density distribution characteristics of immune complexes. The proposed SSDP coupled with support vector machine classifier (SVM) yields high-precision automatic diagnosis of membranous nephropathy (MN). Detailed ex-vivo validation of the proposed method demonstrates the potential clinical value of the system in identifying hepatitis B virus-associated membranous nephropathy (HBV-MN) and primary membranous nephropathy (PMN).

源语言英语
主期刊名Frontiers in Artificial Intelligence and Applications
编辑Antonio J. Tallon-Ballesteros
出版商IOS Press BV
160-167
页数8
ISBN(电子版)9781643681344
DOI
出版状态已出版 - 2020
活动6th International Conference on Fuzzy Systems and Data Mining, FSDM 2020 - Virtual, Online, 中国
期限: 13 11月 202016 11月 2020

出版系列

姓名Frontiers in Artificial Intelligence and Applications
331
ISSN(印刷版)0922-6389
ISSN(电子版)1879-8314

会议

会议6th International Conference on Fuzzy Systems and Data Mining, FSDM 2020
国家/地区中国
Virtual, Online
时期13/11/2016/11/20

指纹

探究 'Spatial-spectral density peaks based discriminant projection for classification of membranous nephropathy hyperspectral pathological image' 的科研主题。它们共同构成独一无二的指纹。

引用此