Span-Pair Interaction and Tagging for Dialogue-Level Aspect-Based Sentiment Quadruple Analysis

Changzhi Zhou, Zhijing Wu*, Dandan Song, Linmei Hu, Yuhang Tian, Jing Xu

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

The Dialogue-level Aspect-based Sentiment Quadruple analysis (DiaASQ) task has recently received attention in the Aspect-Based Sentiment Analysis (ABSA) field. It aims to extract(target, aspect, opinion, sentiment) quadruples from multi-turn and multi-party dialogues. Compared to previous ABSA tasks focusing on text such as sentences, the DiaASQ task involves more complex contextual information and corresponding relations between terms, as well as longer sequences. These characteristics challenge existing methods that struggle to model explicit span-level interactions or have high computational costs. In this paper, we propose a span-pair interaction and tagging method to solve these issues, which includes a novel Span-pair Tagging Scheme (STS) and a simple and efficient Multi-level Representation Model (MRM). STS simplifies the DiaASQ task to a span-pair tagging task and explicitly captures complete span-level semantics by tagging span pairs. MRM efficiently models the dialogue structure information and span-level interactions by constructing multi-level contextual representation. Besides, we train a span ranker to improve the running efficiency of MRM. Extensive experiments on multilingual datasets demonstrate that our method outperforms existing state-of-the-art methods.

源语言英语
主期刊名WWW 2024 - Proceedings of the ACM Web Conference
出版商Association for Computing Machinery, Inc
3995-4005
页数11
ISBN(电子版)9798400701719
DOI
出版状态已出版 - 13 5月 2024
活动33rd ACM Web Conference, WWW 2024 - Singapore, 新加坡
期限: 13 5月 202417 5月 2024

出版系列

姓名WWW 2024 - Proceedings of the ACM Web Conference

会议

会议33rd ACM Web Conference, WWW 2024
国家/地区新加坡
Singapore
时期13/05/2417/05/24

指纹

探究 'Span-Pair Interaction and Tagging for Dialogue-Level Aspect-Based Sentiment Quadruple Analysis' 的科研主题。它们共同构成独一无二的指纹。

引用此