Shape-Controllable Gold Nanoparticle-MoS2 Hybrids Prepared by Tuning Edge-Active Sites and Surface Structures of MoS2 via Temporally Shaped Femtosecond Pulses

Pei Zuo, Lan Jiang*, Xin Li, Bo Li, Yongda Xu, Xuesong Shi, Peng Ran, Tianbao Ma, Dawei Li, Liangti Qu, Yongfeng Lu, Costas P. Grigoropoulos

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

54 引用 (Scopus)

摘要

Edge-active site control of MoS2 is crucial for applications such as chemical catalysis, synthesis of functional composites, and biochemical sensing. This work presents a novel nonthermal method to simultaneously tune surface chemical (edge-active sites) and physical (surface periodic micro/nano structures) properties of MoS2 using temporally shaped femtosecond pulses, through which shape-controlled gold nanoparticles are in situ and self-assembly grown on MoS2 surfaces to form Au-MoS2 hybrids. The edge-active sites with unbound sulfurs of laser-treated MoS2 drive the reduction of gold nanoparticles, while the surface periodic structures of laser-treated MoS2 assist the shape-controllable growth of gold nanoparticles. The proposed novel method highlights the broad application potential of MoS2; for example, these Au-MoS2 hybrids exhibit tunable and highly sensitive SERS activity with an enhancement factor up to 1.2 × 107, indicating the marked potential of MoS2 in future chemical and biological sensing applications.

源语言英语
页(从-至)7447-7455
页数9
期刊ACS applied materials & interfaces
9
8
DOI
出版状态已出版 - 1 3月 2017

指纹

探究 'Shape-Controllable Gold Nanoparticle-MoS2 Hybrids Prepared by Tuning Edge-Active Sites and Surface Structures of MoS2 via Temporally Shaped Femtosecond Pulses' 的科研主题。它们共同构成独一无二的指纹。

引用此