Scene Text Recognition with Linear Constrained Rectification

Gang Wang, Hua Ping Zhang, Jian Yun Shang

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Scene Text Recognition remains a challenging problem because of various styles and image distortions. This paper proposed an end-to-end trainable model with a rectification module network.The rectification module adopts a polynomial based spatial transform network to rectify the distorted input image, the feature representation between the rectification and encoding step is shared. The model can be trained with the scene images and the corresponding word labels. With the flexible rectifying and feature sharing, this model outperforms previous works through the extensive evaluation results on the standard benchmarks, especially on irregular datasets, 80.2% on IC15 and 85.4% on CUTE, more specifically.

源语言英语
主期刊名Proceedings - 2020 International Conference on Computational Science and Computational Intelligence, CSCI 2020
出版商Institute of Electrical and Electronics Engineers Inc.
1568-1574
页数7
ISBN(电子版)9781728176246
DOI
出版状态已出版 - 12月 2020
活动2020 International Conference on Computational Science and Computational Intelligence, CSCI 2020 - Las Vegas, 美国
期限: 16 12月 202018 12月 2020

出版系列

姓名Proceedings - 2020 International Conference on Computational Science and Computational Intelligence, CSCI 2020

会议

会议2020 International Conference on Computational Science and Computational Intelligence, CSCI 2020
国家/地区美国
Las Vegas
时期16/12/2018/12/20

指纹

探究 'Scene Text Recognition with Linear Constrained Rectification' 的科研主题。它们共同构成独一无二的指纹。

引用此