Robustness can be cheap: A highly efficient approach to discover outliers under high outlier ratios

Siqi Wang, En Zhu*, Xiping Hu, Xinwang Liu, Qiang Liu, Jianping Yin, Fei Wang

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

5 引用 (Scopus)

摘要

Efficient detection of outliers from massive data with a high outlier ratio is challenging but not explicitly discussed yet. In such a case, existing methods either suffer from poor robustness or require expensive computations. This paper proposes a Low-rank based Efficient Outlier Detection (LEOD) framework to achieve favorable robustness against high outlier ratios with much cheaper computations. Specifically, it is worth highlighting the following aspects of LEOD: (1) Our framework exploits the low-rank structure embedded in the similarity matrix and considers inliers/outliers equally based on this low-rank structure, which facilitates us to encourage satisfying robustness with low computational cost later; (2) A novel re-weighting algorithm is derived as a new general solution to the constrained eigenvalue problem, which is a major bottleneck for the optimization process. Instead of the high space and time complexity (O((2n)2)/O((2n)3)) required by the classic solution, our algorithm enjoys O(n) space complexity and a faster optimization speed in the experiments; (3) A new alternative formulation is proposed for further acceleration of the solution process, where a cheap closed-form solution can be obtained. Experiments show that LEOD achieves strong robustness under an outlier ratio from 20% to 60%, while it is at most 100 times more memory efficient and 1000 times faster than its previous counterpart that attains comparable performance. The codes of LEOD are publicly available at https://github.com/demonzyj56/LEOD.

源语言英语
主期刊名33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
出版商AAAI press
5313-5320
页数8
ISBN(电子版)9781577358091
出版状态已出版 - 2019
已对外发布
活动33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 - Honolulu, 美国
期限: 27 1月 20191 2月 2019

出版系列

姓名33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019

会议

会议33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
国家/地区美国
Honolulu
时期27/01/191/02/19

指纹

探究 'Robustness can be cheap: A highly efficient approach to discover outliers under high outlier ratios' 的科研主题。它们共同构成独一无二的指纹。

引用此