TY - GEN
T1 - Rethinking Point Cloud Registration as Masking and Reconstruction
AU - Chen, Guangyan
AU - Wang, Meiling
AU - Yuan, Li
AU - Yang, Yi
AU - Yue, Yufeng
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Point cloud registration is essential in computer vision and robotics. In this paper, a critical observation is made that the invisible parts of each point cloud can be directly utilized as inherent masks, and the aligned point cloud pair can be regarded as the reconstruction target. Motivated by this observation, we rethink the point cloud registration problem as a masking and reconstruction task. To this end, a generic and concise auxiliary training network, the Masked Reconstruction Auxiliary Network (MRA), is proposed. The MRA reconstructs the complete point cloud by separately using the encoded features of each point cloud obtained from the backbone, guiding the contextual features in the backbone to capture fine-grained geometric details and the overall structures of point cloud pairs. Unlike recently developed high-performing methods that incorporate specific encoding methods into transformer models, which sacrifice versatility and introduce significant computational complexity during the inference process, our MRA can be easily inserted into other methods to further improve registration accuracy. Additionally, the MRA is detached after training, thereby avoiding extra computational complexity during the inference process. Building upon the MRA, we present a novel transformer-based method, the Masked Reconstruction Transformer (MRT), which achieves both precise and efficient alignment using standard transformers. Extensive experiments conducted on the 3DMatch, ModelNet40, and KITTI datasets demonstrate the superior performance of our MRT over state-of-the-art methods. Codes are available at https://github.com/CGuangyan-BIT/MRA.
AB - Point cloud registration is essential in computer vision and robotics. In this paper, a critical observation is made that the invisible parts of each point cloud can be directly utilized as inherent masks, and the aligned point cloud pair can be regarded as the reconstruction target. Motivated by this observation, we rethink the point cloud registration problem as a masking and reconstruction task. To this end, a generic and concise auxiliary training network, the Masked Reconstruction Auxiliary Network (MRA), is proposed. The MRA reconstructs the complete point cloud by separately using the encoded features of each point cloud obtained from the backbone, guiding the contextual features in the backbone to capture fine-grained geometric details and the overall structures of point cloud pairs. Unlike recently developed high-performing methods that incorporate specific encoding methods into transformer models, which sacrifice versatility and introduce significant computational complexity during the inference process, our MRA can be easily inserted into other methods to further improve registration accuracy. Additionally, the MRA is detached after training, thereby avoiding extra computational complexity during the inference process. Building upon the MRA, we present a novel transformer-based method, the Masked Reconstruction Transformer (MRT), which achieves both precise and efficient alignment using standard transformers. Extensive experiments conducted on the 3DMatch, ModelNet40, and KITTI datasets demonstrate the superior performance of our MRT over state-of-the-art methods. Codes are available at https://github.com/CGuangyan-BIT/MRA.
UR - http://www.scopus.com/inward/record.url?scp=85185876855&partnerID=8YFLogxK
U2 - 10.1109/ICCV51070.2023.01624
DO - 10.1109/ICCV51070.2023.01624
M3 - Conference contribution
AN - SCOPUS:85185876855
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 17671
EP - 17681
BT - Proceedings - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
Y2 - 2 October 2023 through 6 October 2023
ER -