Rethinking Point Cloud Registration as Masking and Reconstruction

Guangyan Chen, Meiling Wang, Li Yuan, Yi Yang, Yufeng Yue*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

2 引用 (Scopus)

摘要

Point cloud registration is essential in computer vision and robotics. In this paper, a critical observation is made that the invisible parts of each point cloud can be directly utilized as inherent masks, and the aligned point cloud pair can be regarded as the reconstruction target. Motivated by this observation, we rethink the point cloud registration problem as a masking and reconstruction task. To this end, a generic and concise auxiliary training network, the Masked Reconstruction Auxiliary Network (MRA), is proposed. The MRA reconstructs the complete point cloud by separately using the encoded features of each point cloud obtained from the backbone, guiding the contextual features in the backbone to capture fine-grained geometric details and the overall structures of point cloud pairs. Unlike recently developed high-performing methods that incorporate specific encoding methods into transformer models, which sacrifice versatility and introduce significant computational complexity during the inference process, our MRA can be easily inserted into other methods to further improve registration accuracy. Additionally, the MRA is detached after training, thereby avoiding extra computational complexity during the inference process. Building upon the MRA, we present a novel transformer-based method, the Masked Reconstruction Transformer (MRT), which achieves both precise and efficient alignment using standard transformers. Extensive experiments conducted on the 3DMatch, ModelNet40, and KITTI datasets demonstrate the superior performance of our MRT over state-of-the-art methods. Codes are available at https://github.com/CGuangyan-BIT/MRA.

源语言英语
主期刊名Proceedings - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
出版商Institute of Electrical and Electronics Engineers Inc.
17671-17681
页数11
ISBN(电子版)9798350307184
DOI
出版状态已出版 - 2023
活动2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023 - Paris, 法国
期限: 2 10月 20236 10月 2023

出版系列

姓名Proceedings of the IEEE International Conference on Computer Vision
ISSN(印刷版)1550-5499

会议

会议2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
国家/地区法国
Paris
时期2/10/236/10/23

指纹

探究 'Rethinking Point Cloud Registration as Masking and Reconstruction' 的科研主题。它们共同构成独一无二的指纹。

引用此