TY - JOUR
T1 - Probability density distribution of delta RR intervals
T2 - a novel method for the detection of atrial fibrillation
AU - Li, Yanjun
AU - Tang, Xiaoying
AU - Wang, Ancong
AU - Tang, Hui
N1 - Publisher Copyright:
© 2017, Australasian College of Physical Scientists and Engineers in Medicine.
PY - 2017/9/1
Y1 - 2017/9/1
N2 - Atrial fibrillation (AF) monitoring and diagnosis require automatic AF detection methods. In this paper, a novel image-based AF detection method was proposed. The map was constructed by plotting changes of RR intervals (△RR) into grid panes. First, the map was divided into grid panes with 20 ms fixed resolution in y-axes and 15–60 s step length in x-axes. Next, the blank pane ratio (BPR), the entropy and the probability density distribution were processed using linear support-vector machine (LSVM) to classify AF and non-AF episodes. The performance was evaluated based on four public physiological databases. The Cohen’s Kappa coefficients were 0.87, 0.91 and 0.64 at 50 s step length for the long-term AF database, the MIT-BIH AF database and the MIT-BIH arrhythmia database, respectively. Best results were achieved as follows: (1) an accuracy of 93.7%, a sensitivity of 95.1%, a specificity of 92.0% and a positive predictive value (PPV) of 93.5% were obtained for the long-term AF database at 60 s step length. (2) An accuracy of 95.9%, a sensitivity of 95.3%, a specificity of 96.3% and a PPV of 94.1% were obtained for the MIT-BIH AF database at 40 s step length. (3) An accuracy of 90.6%, a sensitivity of 94.5%, a specificity of 90.0% and a PPV of 55.0% were achieved for the MIT-BIH arrhythmia database at 60 s step length. (4) Both accuracy and specificity were 96.0% for the MIT-BIH normal sinus rhythm database at 40 s step length. In conclusion, the intuitive grid map of delta RR intervals offers a new approach to achieving comparable performance with previously published AF detection methods.
AB - Atrial fibrillation (AF) monitoring and diagnosis require automatic AF detection methods. In this paper, a novel image-based AF detection method was proposed. The map was constructed by plotting changes of RR intervals (△RR) into grid panes. First, the map was divided into grid panes with 20 ms fixed resolution in y-axes and 15–60 s step length in x-axes. Next, the blank pane ratio (BPR), the entropy and the probability density distribution were processed using linear support-vector machine (LSVM) to classify AF and non-AF episodes. The performance was evaluated based on four public physiological databases. The Cohen’s Kappa coefficients were 0.87, 0.91 and 0.64 at 50 s step length for the long-term AF database, the MIT-BIH AF database and the MIT-BIH arrhythmia database, respectively. Best results were achieved as follows: (1) an accuracy of 93.7%, a sensitivity of 95.1%, a specificity of 92.0% and a positive predictive value (PPV) of 93.5% were obtained for the long-term AF database at 60 s step length. (2) An accuracy of 95.9%, a sensitivity of 95.3%, a specificity of 96.3% and a PPV of 94.1% were obtained for the MIT-BIH AF database at 40 s step length. (3) An accuracy of 90.6%, a sensitivity of 94.5%, a specificity of 90.0% and a PPV of 55.0% were achieved for the MIT-BIH arrhythmia database at 60 s step length. (4) Both accuracy and specificity were 96.0% for the MIT-BIH normal sinus rhythm database at 40 s step length. In conclusion, the intuitive grid map of delta RR intervals offers a new approach to achieving comparable performance with previously published AF detection methods.
KW - Arrhythmia
KW - Atrial fibrillation (AF)
KW - Atrial fibrillation database
KW - Delta RR intervals (△RR)
KW - Grid map
KW - Probability density distribution (PDD)
UR - http://www.scopus.com/inward/record.url?scp=85020541825&partnerID=8YFLogxK
U2 - 10.1007/s13246-017-0554-2
DO - 10.1007/s13246-017-0554-2
M3 - Article
C2 - 28620839
AN - SCOPUS:85020541825
SN - 0158-9938
VL - 40
SP - 707
EP - 716
JO - Australasian Physical and Engineering Sciences in Medicine
JF - Australasian Physical and Engineering Sciences in Medicine
IS - 3
ER -