TY - JOUR
T1 - Predicting Politician's Supporters' Network on Twitter Using Social Network Analysis and Semantic Analysis
AU - Khan, Asif
AU - Zhang, Huaping
AU - Shang, Jianyun
AU - Boudjellal, Nada
AU - Ahmad, Arshad
AU - Ali, Asmat
AU - Dai, Lin
N1 - Publisher Copyright:
© 2020 Asif Khan et al.
PY - 2020
Y1 - 2020
N2 - Politics is one of the hottest and most commonly mentioned and viewed topics on social media networks nowadays. Microblogging platforms like Twitter and Weibo are widely used by many politicians who have a huge number of followers and supporters on those platforms. It is essential to study the supporters' network of political leaders because it can help in decision making when predicting their political futures. This study focuses on the supporters' network of three famous political leaders of Pakistan, namely, Imran Khan (IK), Maryam Nawaz Sharif (MNS), and Bilawal Bhutto Zardari (BBZ). This is done using social network analysis and semantic analysis. The proposed method (1) detects and removes fake supporter(s), (2) mines communities in the politicians' social network(s), (3) investigates the supporters' reply network for conversations between supporters about each leader, and, finally, (4) analyses the retweet network for information diffusion of each political leader. Furthermore, sentiment analysis of the supporters of politicians is done using machine learning techniques, which ultimately predicted and revealed the strongest supporter network(s) among the three political leaders. Analysis of this data reveals that as of October 2017 (1) IK was the most renowned of the three politicians and had the strongest supporter's community while using Twitter in avery controlled manner, (2) BBZ had the weakest supporters' network on Twitter, and (3) the supporters of the political leaders in Pakistan are flexible on Twitter, communicating with each other, and that any group of supporters has a low level of isolation.
AB - Politics is one of the hottest and most commonly mentioned and viewed topics on social media networks nowadays. Microblogging platforms like Twitter and Weibo are widely used by many politicians who have a huge number of followers and supporters on those platforms. It is essential to study the supporters' network of political leaders because it can help in decision making when predicting their political futures. This study focuses on the supporters' network of three famous political leaders of Pakistan, namely, Imran Khan (IK), Maryam Nawaz Sharif (MNS), and Bilawal Bhutto Zardari (BBZ). This is done using social network analysis and semantic analysis. The proposed method (1) detects and removes fake supporter(s), (2) mines communities in the politicians' social network(s), (3) investigates the supporters' reply network for conversations between supporters about each leader, and, finally, (4) analyses the retweet network for information diffusion of each political leader. Furthermore, sentiment analysis of the supporters of politicians is done using machine learning techniques, which ultimately predicted and revealed the strongest supporter network(s) among the three political leaders. Analysis of this data reveals that as of October 2017 (1) IK was the most renowned of the three politicians and had the strongest supporter's community while using Twitter in avery controlled manner, (2) BBZ had the weakest supporters' network on Twitter, and (3) the supporters of the political leaders in Pakistan are flexible on Twitter, communicating with each other, and that any group of supporters has a low level of isolation.
UR - http://www.scopus.com/inward/record.url?scp=85092083168&partnerID=8YFLogxK
U2 - 10.1155/2020/9353120
DO - 10.1155/2020/9353120
M3 - Article
AN - SCOPUS:85092083168
SN - 1058-9244
VL - 2020
JO - Scientific Programming
JF - Scientific Programming
M1 - 9353120
ER -