Para-Blaschke isoparametric spacelike hypersurfaces in Lorentzian space forms

Xiu Ji, Tongzhu Li, Huafei Sun

科研成果: 期刊稿件文章同行评审

1 引用 (Scopus)

摘要

Let x : Mn → M1n+1(c) be an umbilic-free spacelike hypersurface in the (n+ 1)-dimensional Lorentzian space form M1n+1(c). Three basic conformal invariants of Mn are the conformal 1-form C, the conformal second fundamental form B, and the Blaschke tensor A. The para-Blaschke tensor Dλ = A + λB which is a linear combination of A and B for some constant λ is a symmetric (0, 2)-tensor. A spacelike hypersurface is called a para-Blaschke isoparametric spacelike hypersurface if the conformal 1-form vanishes and the eigenvalues of the para-Blaschke tensor are constant. In this paper, we classify the para-Blaschke isoparametric spacelike hypersurfaces under the conformal group of M1n+1(c).

源语言英语
页(从-至)685-706
页数22
期刊Houston Journal of Mathematics
45
3
出版状态已出版 - 2019

指纹

探究 'Para-Blaschke isoparametric spacelike hypersurfaces in Lorentzian space forms' 的科研主题。它们共同构成独一无二的指纹。

引用此