摘要
Let x : Mn → M1n+1(c) be an umbilic-free spacelike hypersurface in the (n+ 1)-dimensional Lorentzian space form M1n+1(c). Three basic conformal invariants of Mn are the conformal 1-form C, the conformal second fundamental form B, and the Blaschke tensor A. The para-Blaschke tensor Dλ = A + λB which is a linear combination of A and B for some constant λ is a symmetric (0, 2)-tensor. A spacelike hypersurface is called a para-Blaschke isoparametric spacelike hypersurface if the conformal 1-form vanishes and the eigenvalues of the para-Blaschke tensor are constant. In this paper, we classify the para-Blaschke isoparametric spacelike hypersurfaces under the conformal group of M1n+1(c).
源语言 | 英语 |
---|---|
页(从-至) | 685-706 |
页数 | 22 |
期刊 | Houston Journal of Mathematics |
卷 | 45 |
期 | 3 |
出版状态 | 已出版 - 2019 |