Optimization and robustness of the topological corner state in second-order topological photonic crystals

Xin Xie, Jianchen Dang, Sai Yan, Weixuan Zhang, Huiming Hao, Shan Xiao, Shushu Shi, Zhanchun Zuo, Haiqiao Ni, Zhichuan Niu, Xiangdong Zhang, Can Wang, Xiulai Xu*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

16 引用 (Scopus)

摘要

The second-order topological photonic crystal with the 0D corner state provides a new way to investigate cavity quantum electrodynamics and develop topological nanophotonic devices with diverse functionalities. Here, we report on the optimization and robustness of the topological corner state in the second-order topological photonic crystal both in theory and in experiment. The topological nanocavity is formed based on the 2D generalized Su-Schrieffer-Heeger model. The quality factor of the corner state is optimized theoretically and experimentally by changing the gap between two photonic crystals or just modulating the position or size of the airholes surrounding the corner. The fabricated quality factors are further optimized by the surface passivation treatment which reduces surface absorption. A maximum quality factor of the fabricated devices is about 6000, which is the highest value ever reported for the active topological corner state. Furthermore, we demonstrate the robustness of the corner state against strong disorders including the bulk defect, edge defect, and even corner defect. Our results lay a solid foundation for further investigations and applications of the topological corner state, such as the investigation of a strong coupling regime and the development of optical devices for topological nanophotonic circuitry.

源语言英语
页(从-至)30735-30750
页数16
期刊Optics Express
29
19
DOI
出版状态已出版 - 13 9月 2021

指纹

探究 'Optimization and robustness of the topological corner state in second-order topological photonic crystals' 的科研主题。它们共同构成独一无二的指纹。

引用此