张 蔚暄

根据储存在 Pure 的刊物以及来自 Scopus 的引用文献数量计算
20152024

每年的科研成果

个人简介

个人简介

职称: 特别研究员/博导
联系电话:
学系: 光学物理系
E-mail: zhangwx@bit.edu.cn
通讯地址: 北京理工大学物理学院

研究领域和方向

基于人工结构的光电物态调控及应用,具体研究方向可分为两方面:
1. 基于人工电路网络与量子晶格模型的完美对应,对具有拓扑、非厄米、非阿贝尔和非线性等复杂特性的量子物态进行理论探索和实验观测,并在新奇量子物态的启发下,开发设计新型功能化电路。
2. 利用人工微纳结构调控新型光子态,并探索其在拓扑光子学、连续谱束缚态、非厄米光子学以及非线性光学等领域的重要应用。

教育背景

2010.09-2014.06 兰州大学物理科学与技术学院,理学学士
2014.09-2020.03 北京理工大学物理学院,理学博士

工作履历

2020.07-2022.12 北京理工大学集成电路与电子学院,特立博士后
2022.12-至今 北京理工大学物理学院,特别研究员/预聘副教授

研究成果

以第一/通讯作者身份发表SCI论文40余篇,包括Nature Communications (5篇),Physical Review Letters (4篇),Advanced Material,Light: Science & Applications等,2篇入选ESI高被引论文。所做工作获得Light学术出版中心颁发的杰出论文奖,并被Physics World、Phys. Org、AzoNano以及Bioengineer.org等多家主流科研媒体所报道。代表性成果总结如下,
基于人工电路的物态调控及应用研究:
—首次理论揭示非阿贝尔平带系统中的逆安德森相变,并设计非阿贝尔拓扑电路进行实验验证。该工作受到了编辑的高度评价,被选为Editor’s Suggestions [Phys. Rev. Lett. 130, 206401 (2023) , Editor’s Suggestions];
—首次理论揭示具有非平庸二阶陈数的双曲拓扑态,并设计人工拓扑电路进行实验验证。该工作为在二维非欧空间中实现具有高阶拓扑不变量的新奇拓扑态提供了重要的参考[Nat. Commun. 14, 1083 (2023)];
—首次理论揭示负曲率空间中,边界统治的双曲陈绝缘体和分形高阶拓扑态,并且制备人工拓扑电路进行实验验证。该工作为设计边界增强的高效拓扑器件提供了重要的参考[Nat. Commun. 13, 2937 (2022)];
—基于二维电路网络,首次实验证明量子统计引起的任意子布洛赫振荡效应[Nat. Commun. 13, 2392 (2022)];
—首次理论揭示高阶安德森拓扑绝缘体的存在,并设计拓扑电路进行实验验证。该工作将安德森拓扑绝缘体的概念推广到高阶拓扑领域,为实验实现更多新奇的安德森拓扑态提供了有效的平台[Phys. Rev. Lett. 126, 146802 (2021), ESI高被引];
—首次实现基于非厄米拓扑电路的超敏传感原型器件[Adv. Sci. 2301128 (2023)];
基于拓扑电路的物态调控及应用
在基于人工微纳结构的物态调控及应用研究:
—基于光子晶体板高阶拓扑角态,首次实验实现了阈值为1uW的拓扑纳腔激光。该阈值比基于拓扑边界态的拓扑激光阈值小三个数量级[Light Sci. Appl. 9, 109 (2020), ESI高被引, Outstanding paper in 2021 for LSA];
—首次提出光子moiré连续谱束缚态的概念,并设计了基于转角光子晶体板的实现方案[Phys. Rev. lett.,128, 253901 (2022)];
—首次提出嵌套光学涡旋纽结的概念,并实现了基于嵌套光学纽结的高容量拓扑编码 [Nat. Commun. 13, 2705 (2022)];
—首次实验证明了声波涡旋纽结的存在[Nat. Commun. 11, 3956 (2020)];
—首次利用光子晶体板构造了非厄米矢量奇异点,并提出基于矢量奇异点的表面增强手性识别方案[Phys. Rev. Lett. 124, 083901 (2020)];
—首次利用微波超材料,实验证明了具有量子效率的全波搜索[Adv. Mater. 30, 1703986 (2018). Featured in: Microwaves in metamaterials perform quantum search, Marric Stephens, Physics World];
基于人工微纳结构的光场调控及应用
部分第一/通讯作者论文列表
1.Zhang W, Wang H, Sun H, Zhang X, Non-Abelian inverse Anderson transitions. Phys. Rev. Lett. 2023, 130, 206401 (Editor’s Suggestions).
2.Zhang W, Di F, Zheng X, Sun H, Zhang X, Hyperbolic band topology with non-trivial second Chern numbers. Nat. Commun. 2023, 14, 1083.
3.Zhang W, Yuan H, Sun N, Sun H, Zhang X, Observation of novel topological states in hyperbolic lattices. Nat. Commun. 2022, 13, 2937.
4.Kong L, Zhang W(共一), Li P, Guo X, Zhang J, Zhang F, Zhao J, Zhang X, High capacity topological coding based on nested vortex knots and links. Nat. Commun. 2022, 13, 2705.
5.Zhang W, Yuan H, Wang H, Di F, Sun N, Zheng X, Sun H, Zhang X, Observation of Bloch oscillations dominated by effective anyonic particle statistics. Nat. Commun. 2022, 13, 2392.
6.Huang L, Zhang W(共一), Zhang X, Moiré quasi-bound states in the continuum. Phys. Rev. Lett., 2022, 128, 253901.
7.Zhang W, Zou D, Pei Q, He W, Bao J, Sun H, Zhang X, Experimental observation of higher-order topological Anderson insulators. Phys. Rev. Lett. 2021, 126, 146802 (ESI高被引).
8.Wu T, Zhang W(共一), Zhang H, Hou S, Chen G, Liu R, Lu C, Li J, Wang R, Duan P, Li J, Wang B, Shi L, Zi J, Zhang X, Vector exceptional points with strong superchiral fields. Phys. Rev. Lett., 2020, 124, 083901.
9.Zhang W, Xie X, Hao H, Dang J, Xiao S, Shi S, Ni H, Niu Z, Wang C, Jin K, Zhang X, Xu X, Low-threshold topological nanolasers based on the second-order corner state. Light Sci. Appl. 2020, 9, 109 (ESI高被引; Outstanding paper in 2021 for LSA).
10.Zhang H, Zhang W(共一), Liao Y, Zhou X, Li J, Hu G, Zhang X, Creating of acoustic vortex knots. Nat. Commun. 2020, 11, 3956.
11.Zhang W, Cheng K, Wu C, Wang Y, Li H, Zhang X, Implementing quantum search algorithm with metamaterials. Adv. Mater. 2018, 30, 1703986 (Featured in: Microwaves in metamaterials perform quantum search, Marric Stephens, Physics World).
12.Zhao W, Zhang W(共一), Wang R, Ji Y, Wu X, Zhang X, Photocontrollable Chiral Switching and Selection in Self-Assembled Plasmonic Nanostructure. Adv. Funct. Mater. 2019, 29, 1900263.
13.Yuan H, Zhang W(共一), Zhou Z, Wang W, Pan N, Feng Y, Sun H, Zhang X, Non-Hermitian Topolectrical Circuit Sensor with High Sensitivity. Adv. Sci. 2023, 2301128.
14.Zhang W, Yuan H, He W, Zheng X, Sun N, Di F, Sun H, Zhang X, Observation of interaction-induced phenomena of relativistic quantum mechanics. Commun. Phys., 2021, 4, 250.
15.Zhang W, Qian L, Sun H, Zhang X, Anyonic bound states in the continuum. Commun. Phys., 2023.
16.Xie X, Zhang W(共一), He X, Wu S, Dang J, Peng K, Song F, Yang L, Ni H, Niu Z, Wang C, Jin K, Zhang X, Xu X, Cavity Quantum Electrodynamics with Second-Order Topological Corner State, Laser & Photo. Rev. 2020, 14, 1900425 (Outside Back Cover, Top cited article of WILEY).
17.Zhang W, Zou D, Bao J, He W, Pei Q, Sun H, Zhang X, Topolectrical-circuit realization of a four-dimensional hexadecapole insulator. Phys. Rev. B (Rapid Commun.) 2020, 102, 100102(R) (Editor’s Suggestions).
18.Zhang W, Zhang X, Backscattering-Immune computing of spatial differentiation by nonreciprocal plasmonics. Phys. Rev. Applied. 2019, 11, 054003.
19.Zhang W, Zou D, Pei Q, He W, Sun H, Zhang X, Moiré circuits: Engineering magic-angle behavior. Phys. Rev. B (Letter), 2021, 104, L201408.
20.Zhang W, Di F, Yuan H, Wang H, Zheng X, He L, Sun H, Zhang X, Observation of non-Hermitian aggregation effects induced by strong interactions. Phys. Rev. B, 2022, 105, 195131.
21.Zhou X, Zhang W(通讯), Sun H, Zhang X. Observation of flat-band localization and topological edge states induced by effective strong interactions in electrical circuit networks. Phys. Rev. B, 2023, 107, 035152.
22.Wang H, Zhang W(共一), Sun H, Zhang X. Observation of inverse Anderson transitions in Aharonov-Bohm topolectrical circuits. Phys. Rev. B 2022, 106, 104203.
23.Pei Q, Yuan, H, Zhang W(通讯), Zhang X. Engineering boundary-dominated topological states in defective hyperbolic lattices. Phys. Rev. B, 2023, 107, 165145.
24.Zhang W, Wu T, Wang R, Zhang X, Amplification of the molecular chiroptical effect by low-loss dielectric nanoantennas. Nanoscale 2017, 9, 5701.
25.Liu Y, Zhang W(通讯), He L, Zhang X. All-optical separation of chiral nanoparticles on silicon-based microfluidic chips with vector exceptional points. APL Photonics 2023, 8, 036112.

与联合国可持续发展目标相关的专业知识

2015 年,联合国成员国同意 17 项可持续发展目标 (SDG),以消除贫困、保护地球并确保全人类的繁荣。此人的工作有助于实现下列可持续发展目标:

  • 可持续发展目标 7 - 经济适用的清洁能源

指纹图谱

深入其中 Weixuan Zhang 为活跃的研究主题。这些主题标签来自此人的成果。它们共同形成唯一的指纹。
  • 1 相似简介

最近五年的合作关系和顶尖研究领域

最近的国家/地区级外部合作关系。点击圆点,以了解详细信息或