On the minimum vertex cover of generalized Petersen graphs

Dannielle D.D. Jin, David G.L. Wang*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

2 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 2
  • Captures
    • Readers: 4
see details

摘要

It is known that any vertex cover of the generalized Petersen graph P(n,k) has size at least n. Behsaz, Hatami and Mahmoodian characterized such graphs with minimum vertex cover numbers n and n+1, and those with k≤3. For k≥4 and n≥2k+2, we prove that if the 2-adic valuation of n is less than or equal to that of k, then the minimum vertex cover number of P(n,k) equals n+2 if and only if n∈{2k+2,3k−1,3k+1}.

源语言英语
页(从-至)309-318
页数10
期刊Discrete Applied Mathematics
266
DOI
出版状态已出版 - 15 8月 2019

引用此

Jin, D. D. D., & Wang, D. G. L. (2019). On the minimum vertex cover of generalized Petersen graphs. Discrete Applied Mathematics, 266, 309-318. https://doi.org/10.1016/j.dam.2018.12.011