摘要
We give a best possible Dirac-like condition for a graph G so that its line graph L(G) is subpancyclic, i.e., L(G) contains a cycle of length l for each l between 3 and the circumference of G. The result verifies the conjecture posed by Xiong (Pancyclic results in hamiltonian line graphs, in: Combinatorics and Graph Theory '95, vol. 2, Proceedings of the Summer School and International Conference on Combinatorics, World Scientific).
源语言 | 英语 |
---|---|
页(从-至) | 67-74 |
页数 | 8 |
期刊 | Journal of Graph Theory |
卷 | 27 |
期 | 2 |
DOI | |
出版状态 | 已出版 - 2月 1998 |
已对外发布 | 是 |
指纹
探究 'On Subpancyclic Line Graphs' 的科研主题。它们共同构成独一无二的指纹。引用此
Xiong, L. (1998). On Subpancyclic Line Graphs. Journal of Graph Theory, 27(2), 67-74. https://doi.org/10.1002/(SICI)1097-0118(199802)27:2<67::AID-JGT2>3.0.CO;2-D