TY - GEN
T1 - Numerical simulation of torque converter with different pump blade camber
AU - Ke, Zhifang
AU - Liu, Cheng
AU - Wei, Wei
AU - Yan, Qingdong
AU - Meng, Xianglu
N1 - Publisher Copyright:
Copyright © 2019 ASME.
PY - 2019
Y1 - 2019
N2 - The main function of the torque converter pump is to transfer mechanical power into fluid dynamic energy. It has been proved that the pump blade shape, especially pump blade camber peak, is crucial to torque converter hydrodynamic performance. However, it remains unclear how this parameter affects internal flow characteristics, and how it leads to the difference in performance. Thus, the relationship between the pump blade camber and the performance of torque converter and the flow mechanism were explored in this study. Torque converters with different pump blade camber were tested. Meanwhile, the corresponding numerical models were also established and their internal flow fields were investigated through steady-state simulations. The influence of the pump blade camber on the hydrodynamic performance was studied using both numerical and experimental methods, and the flow mechanism was also revealed and elaborated by exploring the numerical flow fields. The results from both experiments and simulations showed that larger pump blade camber peak led to higher pump capacity, higher maximum efficiency and lower stall torque ratio. The flow field simulation revealed that larger pump camber peak would lead to higher total pressure in pump channel. And the pressure distribution between the suction and pressure surface showed a similar pattern; however, their difference, especially near the leading and tailing edge, depends on the camber peak. Besides, higher camber peak blade absorbed more power, also induced more complex vortex, but there always existed the most efficient speed ratio when pump efficiency can reach to peak, at this moment, the difference between angle of attack and entrance angle reach the zero, which can be used to guide the design of pump blade.
AB - The main function of the torque converter pump is to transfer mechanical power into fluid dynamic energy. It has been proved that the pump blade shape, especially pump blade camber peak, is crucial to torque converter hydrodynamic performance. However, it remains unclear how this parameter affects internal flow characteristics, and how it leads to the difference in performance. Thus, the relationship between the pump blade camber and the performance of torque converter and the flow mechanism were explored in this study. Torque converters with different pump blade camber were tested. Meanwhile, the corresponding numerical models were also established and their internal flow fields were investigated through steady-state simulations. The influence of the pump blade camber on the hydrodynamic performance was studied using both numerical and experimental methods, and the flow mechanism was also revealed and elaborated by exploring the numerical flow fields. The results from both experiments and simulations showed that larger pump blade camber peak led to higher pump capacity, higher maximum efficiency and lower stall torque ratio. The flow field simulation revealed that larger pump camber peak would lead to higher total pressure in pump channel. And the pressure distribution between the suction and pressure surface showed a similar pattern; however, their difference, especially near the leading and tailing edge, depends on the camber peak. Besides, higher camber peak blade absorbed more power, also induced more complex vortex, but there always existed the most efficient speed ratio when pump efficiency can reach to peak, at this moment, the difference between angle of attack and entrance angle reach the zero, which can be used to guide the design of pump blade.
KW - Blade camber
KW - Internal flow
KW - Numerical simulation
KW - Parameter sensitive study
KW - Pump efficiency
KW - Torque converter
UR - http://www.scopus.com/inward/record.url?scp=85076725981&partnerID=8YFLogxK
U2 - 10.1115/AJKFluids2019-5394
DO - 10.1115/AJKFluids2019-5394
M3 - Conference contribution
AN - SCOPUS:85076725981
T3 - ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference, AJKFluids 2019
BT - Fluid Applications and Systems
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference, AJKFluids 2019
Y2 - 28 July 2019 through 1 August 2019
ER -