TY - GEN
T1 - Metapath-guided heterogeneous graph neural network for intent recommendation
AU - Fan, Shaohua
AU - Shi, Chuan
AU - Hu, Linmei
AU - Zhu, Junxiong
AU - Ma, Biyu
AU - Han, Xiaotian
AU - Li, Yongliang
N1 - Publisher Copyright:
© 2019 Association for Computing Machinery.
PY - 2019/7/25
Y1 - 2019/7/25
N2 - With the prevalence of mobile e-commerce nowadays, a new type of recommendation services, called intent recommendation, is widely used in many mobile e-commerce Apps, such as Taobao and Amazon. Different from traditional query recommendation and item recommendation, intent recommendation is to automatically recommend user intent according to user historical behaviors without any input when users open the App. Intent recommendation becomes very popular in the past two years, because of revealing user latent intents and avoiding tedious input in mobile phones. Existing methods used in industry usually need laboring feature engineering. Moreover, they only utilize attribute and statistic information of users and queries, and fail to take full advantage of rich interaction information in intent recommendation, which may result in limited performances. In this paper, we propose to model the complex objects and rich interactions in intent recommendation as a Heterogeneous Information Network. Furthermore, we present a novel Metapath-guided Embedding method for Intent Recommendation (called MEIRec). In order to fully utilize rich structural information, we design a metapath-guided heterogeneous Graph Neural Network to learn the embeddings of objects in intent recommendation. In addition, in order to alleviate huge learning parameters in embeddings, we propose a uniform term embedding mechanism, in which embeddings of objects are made up with the same term embedding space. Offline experiments on real large-scale data show the superior performance of the proposed MEIRec, compared to representative methods. Moreover, the results of online experiments on Taobao e-commerce platform show that MEIRec not only gains a performance improvement of 1.54% on CTR metric, but also attracts up to 2.66% of new users to search queries.
AB - With the prevalence of mobile e-commerce nowadays, a new type of recommendation services, called intent recommendation, is widely used in many mobile e-commerce Apps, such as Taobao and Amazon. Different from traditional query recommendation and item recommendation, intent recommendation is to automatically recommend user intent according to user historical behaviors without any input when users open the App. Intent recommendation becomes very popular in the past two years, because of revealing user latent intents and avoiding tedious input in mobile phones. Existing methods used in industry usually need laboring feature engineering. Moreover, they only utilize attribute and statistic information of users and queries, and fail to take full advantage of rich interaction information in intent recommendation, which may result in limited performances. In this paper, we propose to model the complex objects and rich interactions in intent recommendation as a Heterogeneous Information Network. Furthermore, we present a novel Metapath-guided Embedding method for Intent Recommendation (called MEIRec). In order to fully utilize rich structural information, we design a metapath-guided heterogeneous Graph Neural Network to learn the embeddings of objects in intent recommendation. In addition, in order to alleviate huge learning parameters in embeddings, we propose a uniform term embedding mechanism, in which embeddings of objects are made up with the same term embedding space. Offline experiments on real large-scale data show the superior performance of the proposed MEIRec, compared to representative methods. Moreover, the results of online experiments on Taobao e-commerce platform show that MEIRec not only gains a performance improvement of 1.54% on CTR metric, but also attracts up to 2.66% of new users to search queries.
KW - Graph Neural Network
KW - Heterogeneous Information Network
KW - Intent Recommendation
KW - Recommender Systems
UR - http://www.scopus.com/inward/record.url?scp=85071184142&partnerID=8YFLogxK
U2 - 10.1145/3292500.3330673
DO - 10.1145/3292500.3330673
M3 - Conference contribution
AN - SCOPUS:85071184142
T3 - Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
SP - 2478
EP - 2486
BT - KDD 2019 - Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
PB - Association for Computing Machinery
T2 - 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2019
Y2 - 4 August 2019 through 8 August 2019
ER -