Möbius homogeneous hypersurfaces with three distinct principal curvatures in Sn+1

Tongzhu Li*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

5 引用 (Scopus)

摘要

Let x: Mn → Sn+1 be an immersed hypersurface in the (n + 1)-dimensional sphere Sn+1. If, for any points p, q ∈ Mn, there exists a Möbius transformation ϕ: Sn+1 → Sn+1 such that ϕ ○ x(Mn) = x(Mn) and ϕ ○ x(p) = x(q), then the hypersurface is called a Möbius homogeneous hypersurface. In this paper, the Möbius homogeneous hypersurfaces with three distinct principal curvatures are classified completely up to a Möbius transformation.

源语言英语
页(从-至)1131-1144
页数14
期刊Chinese Annals of Mathematics. Series B
38
5
DOI
出版状态已出版 - 1 9月 2017

指纹

探究 'Möbius homogeneous hypersurfaces with three distinct principal curvatures in Sn+1' 的科研主题。它们共同构成独一无二的指纹。

引用此