摘要
Let x: Mn → Sn+1 be an immersed hypersurface in the (n + 1)-dimensional sphere Sn+1. If, for any points p, q ∈ Mn, there exists a Möbius transformation ϕ: Sn+1 → Sn+1 such that ϕ ○ x(Mn) = x(Mn) and ϕ ○ x(p) = x(q), then the hypersurface is called a Möbius homogeneous hypersurface. In this paper, the Möbius homogeneous hypersurfaces with three distinct principal curvatures are classified completely up to a Möbius transformation.
源语言 | 英语 |
---|---|
页(从-至) | 1131-1144 |
页数 | 14 |
期刊 | Chinese Annals of Mathematics. Series B |
卷 | 38 |
期 | 5 |
DOI | |
出版状态 | 已出版 - 1 9月 2017 |
指纹
探究 'Möbius homogeneous hypersurfaces with three distinct principal curvatures in Sn+1' 的科研主题。它们共同构成独一无二的指纹。引用此
Li, T. (2017). Möbius homogeneous hypersurfaces with three distinct principal curvatures in Sn+1 Chinese Annals of Mathematics. Series B, 38(5), 1131-1144. https://doi.org/10.1007/s11401-017-1028-2