Knowledgeable Parameter Efficient Tuning Network for Commonsense Question Answering

Ziwang Zhao, Linmei Hu*, Hanyu Zhao, Yingxia Shao, Yequan Wang

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

6 引用 (Scopus)

摘要

Commonsense question answering is important for making decisions about everyday matters. Although existing commonsense question answering works based on fully fine-tuned PLMs have achieved promising results, they suffer from prohibitive computation costs as well as poor interpretability. Some works improve the PLMs by incorporating knowledge to provide certain evidence, via elaborately designed GNN modules which require expertise. In this paper, we propose a simple knowledgeable parameter efficient tuning network to couple PLMs with external knowledge for commonsense question answering. Specifically, we design a trainable parameter-sharing adapter attached to a parameter-freezing PLM to incorporate knowledge at a small cost. The adapter is equipped with both entity- and query-related knowledge via two auxiliary knowledge-related tasks (i.e., span masking and relation discrimination). To make the adapter focus on the relevant knowledge, we design gating and attention mechanisms to respectively filter and fuse the query information from the PLM. Extensive experiments on two benchmark datasets show that KPE is parameter-efficient and can effectively incorporate knowledge for improving commonsense question answering.

源语言英语
主期刊名Long Papers
出版商Association for Computational Linguistics (ACL)
9051-9063
页数13
ISBN(电子版)9781959429722
出版状态已出版 - 2023
活动61st Annual Meeting of the Association for Computational Linguistics, ACL 2023 - Toronto, 加拿大
期限: 9 7月 202314 7月 2023

出版系列

姓名Proceedings of the Annual Meeting of the Association for Computational Linguistics
1
ISSN(印刷版)0736-587X

会议

会议61st Annual Meeting of the Association for Computational Linguistics, ACL 2023
国家/地区加拿大
Toronto
时期9/07/2314/07/23

指纹

探究 'Knowledgeable Parameter Efficient Tuning Network for Commonsense Question Answering' 的科研主题。它们共同构成独一无二的指纹。

引用此