摘要
Rational design and construction of low-cost and highly efficient electrocatalysts for hydrogen evolution reaction (HER) is meaningful but challenging. Herein, a robust three dimensional (3D) hollow CoSe2@ultrathin MoSe2 core@shell heterostructure (CoSe2@MoSe2) is proposed as an efficient HER electrocatalyst through interfacial engineering. Benefitting from the abundant heterogeneous interfaces on CoSe2@MoSe2, the exposed edge active sites are maximized and the charge transfer at the hetero-interfaces is accelerated, thus facilitating the HER kinetics. It exhibits remarkable performance in pH-universal conditions. Notably, it only needs an overpotential (η10) of 108 mV to reach a current density of 10 mA·cm−2 in 1.0 M KOH, outperforming most of the reported transition metal selenides electrocatalysts. Density functional theory (DFT) calculations unveil that the heterointerfaces synergistically optimize the Gibbs free energies of H2O and H* during alkaline HER, accelerating the reaction kinetics. The present work may provide new construction guidance for rational design of high-efficient electrocatalysts. [Figure not available: see fulltext.]
源语言 | 英语 |
---|---|
页(从-至) | 2895-2904 |
页数 | 10 |
期刊 | Nano Research |
卷 | 15 |
期 | 4 |
DOI | |
出版状态 | 已出版 - 4月 2022 |