Indoor occupancy estimation from carbon dioxide concentration

Chaoyang Jiang, Mustafa K. Masood, Yeng Chai Soh*, Hua Li

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

161 引用 (Scopus)

摘要

This paper developed an indoor occupancy estimator with which we can estimate the number of real-time indoor occupants based on the carbon dioxide (CO2) measurement. The estimator is actually a dynamic model of the occupancy level. To identify the dynamic model, we propose the Feature Scaled Extreme Learning Machine (FS-ELM) algorithm, which is a variation of the standard Extreme Learning Machine (ELM) but is shown to perform better for the occupancy estimation problem. The measured CO2 concentration suffers from serious spikes. We find that pre-smoothing the CO2 data can greatly improve the estimation accuracy. In real applications, however, we cannot obtain the real-time globally smoothed CO2 data. We provide a way to use the locally smoothed CO2 data instead, which is available in real-time. We introduce a new criterion, i.e. x-tolerance accuracy, to assess the occupancy estimator. The proposed occupancy estimator was tested in an office room with 24 cubicles and 11 open seats. The accuracy is up to 94%percent with a tolerance of four occupants.

源语言英语
页(从-至)132-141
页数10
期刊Energy and Buildings
131
DOI
出版状态已出版 - 1 11月 2016
已对外发布

指纹

探究 'Indoor occupancy estimation from carbon dioxide concentration' 的科研主题。它们共同构成独一无二的指纹。

引用此