In-Plane Dual-Gated Spin-Valve Device Based on the Zigzag Graphene Nanoribbon

Min Zhou, Hao Jin, Yanxia Xing

科研成果: 期刊稿件文章同行评审

26 引用 (Scopus)

摘要

Using the nonequilibrium Green's function combined with density-functional theory, we systematically study the transport properties of the zigzag graphene nanoribbon (ZGNR). When an external transverse electric field is applied, a ZGNR can exhibit half-metallic characteristics with its conductive channel localized at the edge positions. Accordingly, an in-plane dual-gated spin-valve device is proposed. Thanks to its unique design, the proposed device overcomes the bottleneck of current leakage and avoids contact issues. Remarkably, a 100% spin injection efficiency and a giant tunnel magnetoresistance of up to 107 are realized, which represent much better performance than that of traditional magnetic tunnel junctions. In addition, we also explore the effect of architecture reconstruction and impurity doping on spin-polarized transport. It is found that, in general, the tunneling process is hindered if disorder occurs at the conductive edge. By contrast, if we put the deformation or impurities away from the conductive edge, the transport properties may be barely degraded or even improved, depending on the type of disorder. It should be possible to apply these ubiquitous underlying principles to other materials, which could inspire the design of alternative spintronic devices with high performance.

源语言英语
文章编号e44006
期刊Physical Review Applied
13
4
DOI
出版状态已出版 - 4月 2020

指纹

探究 'In-Plane Dual-Gated Spin-Valve Device Based on the Zigzag Graphene Nanoribbon' 的科研主题。它们共同构成独一无二的指纹。

引用此