In-Plane Dual-Gated Spin-Valve Device Based on the Zigzag Graphene Nanoribbon

Min Zhou, Hao Jin, Yanxia Xing

Research output: Contribution to journalArticlepeer-review

26 Citations (Scopus)

Abstract

Using the nonequilibrium Green's function combined with density-functional theory, we systematically study the transport properties of the zigzag graphene nanoribbon (ZGNR). When an external transverse electric field is applied, a ZGNR can exhibit half-metallic characteristics with its conductive channel localized at the edge positions. Accordingly, an in-plane dual-gated spin-valve device is proposed. Thanks to its unique design, the proposed device overcomes the bottleneck of current leakage and avoids contact issues. Remarkably, a 100% spin injection efficiency and a giant tunnel magnetoresistance of up to 107 are realized, which represent much better performance than that of traditional magnetic tunnel junctions. In addition, we also explore the effect of architecture reconstruction and impurity doping on spin-polarized transport. It is found that, in general, the tunneling process is hindered if disorder occurs at the conductive edge. By contrast, if we put the deformation or impurities away from the conductive edge, the transport properties may be barely degraded or even improved, depending on the type of disorder. It should be possible to apply these ubiquitous underlying principles to other materials, which could inspire the design of alternative spintronic devices with high performance.

Original languageEnglish
Article numbere44006
JournalPhysical Review Applied
Volume13
Issue number4
DOIs
Publication statusPublished - Apr 2020

Fingerprint

Dive into the research topics of 'In-Plane Dual-Gated Spin-Valve Device Based on the Zigzag Graphene Nanoribbon'. Together they form a unique fingerprint.

Cite this