Hypersurfaces with harmonic conformal gauss map in S4

Tong Zhu Li*, Chang Xiong Nie

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

摘要

Let x : Mn → Sn+1 be an oriented hypersurface in Sn+1, the conformal Gauss map G = (H,Hx + en+1) : Mn → R1n+3 is invariant under Möbius transformations of Sn+1, where H, en+1 are the mean curvature, the global unit normal vector field of x, respectively. In this paper, we study the oriented hypersurface x : M3 → S4 with harmonic conformal Gauss map, and we classify the hypersurfaces in S4 with constant Möbius scalar curvature under Möbius transformation group, which gives some examples of hypersurfaces with harmonic conformal Gauss map, but not Willmore hypersurfaces.

源语言英语
页(从-至)1231-1240
页数10
期刊Acta Mathematica Sinica, Chinese Series
57
6
出版状态已出版 - 1 11月 2014

指纹

探究 'Hypersurfaces with harmonic conformal gauss map in S4' 的科研主题。它们共同构成独一无二的指纹。

引用此

Li, T. Z., & Nie, C. X. (2014). Hypersurfaces with harmonic conformal gauss map in S4. Acta Mathematica Sinica, Chinese Series, 57(6), 1231-1240.