摘要
Let x : Mn → Sn+1 be an oriented hypersurface in Sn+1, the conformal Gauss map G = (H,Hx + en+1) : Mn → R1n+3 is invariant under Möbius transformations of Sn+1, where H, en+1 are the mean curvature, the global unit normal vector field of x, respectively. In this paper, we study the oriented hypersurface x : M3 → S4 with harmonic conformal Gauss map, and we classify the hypersurfaces in S4 with constant Möbius scalar curvature under Möbius transformation group, which gives some examples of hypersurfaces with harmonic conformal Gauss map, but not Willmore hypersurfaces.
源语言 | 英语 |
---|---|
页(从-至) | 1231-1240 |
页数 | 10 |
期刊 | Acta Mathematica Sinica, Chinese Series |
卷 | 57 |
期 | 6 |
出版状态 | 已出版 - 1 11月 2014 |
指纹
探究 'Hypersurfaces with harmonic conformal gauss map in S4' 的科研主题。它们共同构成独一无二的指纹。引用此
Li, T. Z., & Nie, C. X. (2014). Hypersurfaces with harmonic conformal gauss map in S4. Acta Mathematica Sinica, Chinese Series, 57(6), 1231-1240.